|
# <p align=center>`Bilateral Reference for High-Resolution Dichotomous Image Segmentation`</p> |
|
|
|
| *DIS-Sample_1* | *DIS-Sample_2* | |
|
| :------------------------------: | :-------------------------------: | |
|
| <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> | |
|
|
|
This repo is the official implementation of "[**Bilateral Reference for High-Resolution Dichotomous Image Segmentation**](https://arxiv.org/pdf/2401.03407.pdf)" (___arXiv 2024___). |
|
|
|
> **Authors:** |
|
> [Peng Zheng](https://scholar.google.com/citations?user=TZRzWOsAAAAJ), |
|
> [Dehong Gao](https://scholar.google.com/citations?user=0uPb8MMAAAAJ), |
|
> [Deng-Ping Fan](https://scholar.google.com/citations?user=kakwJ5QAAAAJ), |
|
> [Li Liu](https://scholar.google.com/citations?user=9cMQrVsAAAAJ), |
|
> [Jorma Laaksonen](https://scholar.google.com/citations?user=qQP6WXIAAAAJ), |
|
> [Wanli Ouyang](https://scholar.google.com/citations?user=pw_0Z_UAAAAJ), & |
|
> [Nicu Sebe](https://scholar.google.com/citations?user=stFCYOAAAAAJ). |
|
|
|
[[**arXiv**](https://arxiv.org/abs/2401.03407)] [[**code**](https://github.com/ZhengPeng7/BiRefNet)] [[**stuff**](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM)] [[**中文版**](https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link)] |
|
|
|
Our BiRefNet has achieved SOTA on many similar HR tasks: |
|
|
|
**DIS**: [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-te1)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te1?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-te2)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te2?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-te3)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te3?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-te4)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te4?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-vd)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-vd?p=bilateral-reference-for-high-resolution) |
|
|
|
<details><summary>Figure of Comparison on Papers with Codes (by the time of this work):</summary><p> |
|
<img src="https://drive.google.com/thumbnail?id=1DLt6CFXdT1QSWDj_6jRkyZINXZ4vmyRp&sz=w1620" /> |
|
<img src="https://drive.google.com/thumbnail?id=1gn5GyKFlJbMIkre1JyEdHDSYcrFmcLD0&sz=w1620" /> |
|
<img src="https://drive.google.com/thumbnail?id=16CVYYOtafEeZhHqv0am2Daku1n_exMP6&sz=w1620" /> |
|
<img src="https://drive.google.com/thumbnail?id=10K45xwPXmaTG4Ex-29ss9payA9yBnyLn&sz=w1620" /> |
|
<img src="https://drive.google.com/thumbnail?id=16EuyqKFJOqwMmagvfnbC9hUurL9pYLLB&sz=w1620" /> |
|
</details> |
|
<br /> |
|
|
|
**COD**:[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/camouflaged-object-segmentation-on-cod)](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-cod?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/camouflaged-object-segmentation-on-nc4k)](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-nc4k?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/camouflaged-object-segmentation-on-camo)](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-camo?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/camouflaged-object-segmentation-on-chameleon)](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-chameleon?p=bilateral-reference-for-high-resolution) |
|
|
|
<details><summary>Figure of Comparison on Papers with Codes (by the time of this work):</summary><p> |
|
<img src="https://drive.google.com/thumbnail?id=1DLt6CFXdT1QSWDj_6jRkyZINXZ4vmyRp&sz=w1620" /> |
|
<img src="https://drive.google.com/thumbnail?id=1gn5GyKFlJbMIkre1JyEdHDSYcrFmcLD0&sz=w1620" /> |
|
<img src="https://drive.google.com/thumbnail?id=16CVYYOtafEeZhHqv0am2Daku1n_exMP6&sz=w1620" /> |
|
</details> |
|
<br /> |
|
|
|
**HRSOD**: [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/rgb-salient-object-detection-on-davis-s)](https://paperswithcode.com/sota/rgb-salient-object-detection-on-davis-s?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/rgb-salient-object-detection-on-hrsod)](https://paperswithcode.com/sota/rgb-salient-object-detection-on-hrsod?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/rgb-salient-object-detection-on-uhrsd)](https://paperswithcode.com/sota/rgb-salient-object-detection-on-uhrsd?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/salient-object-detection-on-duts-te)](https://paperswithcode.com/sota/salient-object-detection-on-duts-te?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/salient-object-detection-on-dut-omron)](https://paperswithcode.com/sota/salient-object-detection-on-dut-omron?p=bilateral-reference-for-high-resolution) |
|
|
|
<details><summary>Figure of Comparison on Papers with Codes (by the time of this work):</summary><p> |
|
<img src="https://drive.google.com/thumbnail?id=1hNfQtlTAHT4-AVbk_47852zyRp1NOFLs&sz=w1620" /> |
|
<img src="https://drive.google.com/thumbnail?id=1bcVldUAxYkMI3OMTyaP_jNuOugDfYj-d&sz=w1620" /> |
|
<img src="https://drive.google.com/thumbnail?id=1p1zgyVz27cGEqQMtOKzm_6zoYK3Sw_Zk&sz=w1620" /> |
|
<img src="https://drive.google.com/thumbnail?id=1TubAvcoEbH_mHu3I-AxflnB71nkf35jJ&sz=w1620" /> |
|
<img src="https://drive.google.com/thumbnail?id=1A3V9HjVtcMQdnGPwuy-DBVhwKuo0q2lT&sz=w1620" /> |
|
</details> |
|
<br /> |
|
|
|
#### Try our online demos for inference: |
|
|
|
+ **Inference and evaluation** of your given weights: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S) |
|
+ **Online Inference with GUI** with adjustable resolutions: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo) |
|
+ Online **Single Image Inference** on Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link) |
|
<img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1620" /> |
|
|
|
|
|
|
|
## Model Zoo |
|
|
|
> For more general use of our BiRefNet, I managed to extend the original adademic one to more general ones for better application in real life. |
|
> |
|
> Datasets and datasets are suggested to download from official pages. But you can also download the packaged ones: [DIS](https://drive.google.com/drive/folders/1hZW6tAGPJwo9mPS7qGGGdpxuvuXiyoMJ?usp=drive_link), [HRSOD](https://drive.google.com/drive/folders/18_hAE3QM4cwAzEAKXuSNtKjmgFXTQXZN?usp=drive_link), [COD](https://drive.google.com/drive/folders/1EyHmKWsXfaCR9O0BiZEc3roZbRcs4ECO?usp=drive_link), [Backbones](https://drive.google.com/drive/folders/1cmce_emsS8A5ha5XT2c_CZiJzlLM81ms?usp=drive_link). |
|
> |
|
> Find performances (almost all metrics) of all models in the `exp-TASK_SETTINGS` folders in [[**stuff**](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM)]. |
|
|
|
|
|
|
|
<details><summary>Models in the original paper, for <b>comparison on benchmarks</b>:</summary><p> |
|
|
|
| Task | Training Sets | Backbone | Download | |
|
| :---: | :-------------------------: | :-----------: | :----------------------------------------------------------: | |
|
| DIS | DIS5K-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1J90LucvDQaS3R_-9E7QUh1mgJ8eQvccb/view?usp=drive_link) | |
|
| COD | COD10K-TR, CAMO-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1tM5M72k7a8aKF-dYy-QXaqvfEhbFaWkC/view?usp=drive_link) | |
|
| HRSOD | DUTS-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1f7L0Pb1Y3RkOMbqLCW_zO31dik9AiUFa/view?usp=drive_link) | |
|
| HRSOD | HRSOD-TR | swin_v1_large | google-drive | |
|
| HRSOD | UHRSD-TR | swin_v1_large | google-drive | |
|
| HRSOD | DUTS-TR, HRSOD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1WJooyTkhoDLllaqwbpur_9Hle0XTHEs_/view?usp=drive_link) | |
|
| HRSOD | DUTS-TR, UHRSD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1Pu1mv3ORobJatIuUoEuZaWDl2ylP3Gw7/view?usp=drive_link) | |
|
| HRSOD | HRSOD-TR, UHRSD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1xEh7fsgWGaS5c3IffMswasv0_u-aVM9E/view?usp=drive_link) | |
|
| HRSOD | DUTS-TR, HRSOD-TR, UHRSD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/13FaxyyOwyCddfZn2vZo1xG1KNZ3cZ-6B/view?usp=drive_link) | |
|
|
|
</details> |
|
|
|
|
|
|
|
<details><summary>Models trained with customed data (massive, portrait), for <b>general use in practical application</b>:</summary> |
|
|
|
| Task | Training Sets | Backbone | Test Set | Metric (S, wF[, HCE]) | Download | |
|
| :-----------------------: | :----------------------------------------------------------: | :-----------: | :-------: | :-------------------: | :----------------------------------------------------------: | |
|
| **general use** | DIS5K-TR,DIS-TEs, DUTS-TR_TE,HRSOD-TR_TE,UHRSD-TR_TE, HRS10K-TR_TE | swin_v1_large | DIS-VD | 0.889, 0.840, 1152 | [google-drive](https://drive.google.com/file/d/1KRVE-U3OHrUuuFPY4FFdE4eYBeHJSA0H/view?usp=drive_link) | |
|
| **general use** | DIS5K-TR,DIS-TEs, DUTS-TR_TE,HRSOD-TR_TE,UHRSD-TR_TE, HRS10K-TR_TE | swin_v1_tiny | DIS-VD | 0.867, 0.809, 1182 | [Google-drive](https://drive.google.com/file/d/16gDZISjNp7rKi5vsJm6_fbYF8ZBK8AoF/view?usp=drive_link) | |
|
| **general use** | DIS5K-TR, DIS-TEs | swin_v1_large | DIS-VD | 0.907, 0.865, 1059 | [google-drive](https://drive.google.com/file/d/1P6NJzG3Jf1sl7js2q1CPC3yqvBn_O8UJ/view?usp=drive_link) | |
|
| **portrait segmentation** | P3M-10k | swin_v1_large | P3M-500-P | 0.982, 0.990 | [google-drive](https://drive.google.com/file/d/1vrjPoOGj05iSxb4MMeznX5k67VlyfZX5/view?usp=drive_link) | |
|
|
|
</details> |
|
|
|
|
|
|
|
<details><summary>Segmentation with box <b>guidance</b>:</summary> |
|
|
|
*In progress...* |
|
|
|
</details> |
|
|
|
|
|
|
|
<details><summary>Model <b>efficiency</b>:</summary><p> |
|
|
|
> Screenshot from the original paper. All tests are conducted on a single A100 GPU. |
|
|
|
<img src="https://drive.google.com/thumbnail?id=1mTfSD_qt-rFO1t8DRQcyIa5cgWLf1w2-&sz=h300" /> <img src="https://drive.google.com/thumbnail?id=1F_OURIWILVe4u1rSz-aqt6ur__bAef25&sz=h300" /> |
|
|
|
</details> |
|
|
|
|
|
|
|
## Third-Party Creations |
|
|
|
> Concerning edge devices with less computing power, we provide a lightweight version with `swin_v1_tiny` as the backbone, which is x4+ faster and x5+ smaller. The details can be found in [this issue](https://github.com/ZhengPeng7/BiRefNet/issues/11#issuecomment-2041033576) and links there. |
|
|
|
We found there've been some 3rd party applications based on our BiRefNet. Many thanks for their contribution to the community! |
|
Choose the one you like to try with clicks instead of codes: |
|
1. **Applications**: |
|
+ Thanks [**fal.ai/birefnet**](https://fal.ai/models/birefnet): this project on `fal.ai` encapsulates BiRefNet **online** with more useful options in **UI** and **API** to call the model. |
|
<p align="center"><img src="https://drive.google.com/thumbnail?id=1rNk81YV_Pzb2GykrzfGvX6T7KBXR0wrA&sz=w1620" /></p> |
|
|
|
+ Thanks [**ZHO-ZHO-ZHO/ComfyUI-BiRefNet-ZHO**](https://github.com/ZHO-ZHO-ZHO/ComfyUI-BiRefNet-ZHO): this project further improves the **UI** for BiRefNet in ComfyUI, especially for **video data**. |
|
<p align="center"><img src="https://drive.google.com/thumbnail?id=1GOqEreyS7ENzTPN0RqxEjaA76RpMlkYM&sz=w1620" /></p> |
|
|
|
<https://github.com/ZhengPeng7/BiRefNet/assets/25921713/3a1c7ab2-9847-4dac-8935-43a2d3cd2671> |
|
|
|
+ Thanks [**viperyl/ComfyUI-BiRefNet**](https://github.com/viperyl/ComfyUI-BiRefNet): this project packs BiRefNet as **ComfyUI nodes**, and makes this SOTA model easier use for everyone. |
|
<p align="center"><img src="https://drive.google.com/thumbnail?id=1KfxCQUUa2y9T-aysEaeVVjCUt3Z0zSkL&sz=w1620" /></p> |
|
|
|
+ Thanks [**Rishabh**](https://github.com/rishabh063) for offerring a demo for the [easier single image inference on colab](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link). |
|
|
|
2. **More Visual Comparisons** |
|
+ Thanks [**twitter.com/ZHOZHO672070**](https://twitter.com/ZHOZHO672070) for the comparison with more background-removal methods in images: |
|
|
|
<img src="https://drive.google.com/thumbnail?id=1nvVIFt_Ezs-crPSQxUDqkUBz598fTe63&sz=w1620" /> |
|
|
|
+ Thanks [**twitter.com/toyxyz3**](https://twitter.com/toyxyz3) for the comparison with more background-removal methods in videos: |
|
|
|
<https://github.com/ZhengPeng7/BiRefNet/assets/25921713/40136198-01cc-4106-81f9-81c985f02e31> |
|
|
|
<https://github.com/ZhengPeng7/BiRefNet/assets/25921713/1a32860c-0893-49dd-b557-c2e35a83c160> |
|
|
|
|
|
## Usage |
|
|
|
#### Environment Setup |
|
|
|
```shell |
|
# PyTorch==2.0.1 is used for faster training with compilation. |
|
conda create -n dis python=3.9 -y && conda activate dis |
|
pip install -r requirements.txt |
|
``` |
|
|
|
#### Dataset Preparation |
|
|
|
Download combined training / test sets I have organized well from: [DIS](https://drive.google.com/drive/folders/1hZW6tAGPJwo9mPS7qGGGdpxuvuXiyoMJ)--[COD](https://drive.google.com/drive/folders/1EyHmKWsXfaCR9O0BiZEc3roZbRcs4ECO)--[HRSOD](https://drive.google.com/drive/folders/18_hAE3QM4cwAzEAKXuSNtKjmgFXTQXZN) or the single official ones in the `single_ones` folder, or their official pages. You can also find the same ones on my **BaiduDisk**: [DIS](https://pan.baidu.com/s/1O_pQIGAE4DKqL93xOxHpxw?pwd=PSWD)--[COD](https://pan.baidu.com/s/1RnxAzaHSTGBC1N6r_RfeqQ?pwd=PSWD)--[HRSOD](https://pan.baidu.com/s/1_Del53_0lBuG0DKJJAk4UA?pwd=PSWD). |
|
|
|
#### Weights Preparation |
|
|
|
Download backbone weights from [my google-drive folder](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM) or their official pages. |
|
|
|
#### Run |
|
|
|
```shell |
|
# Train & Test & Evaluation |
|
./train_test.sh RUN_NAME GPU_NUMBERS_FOR_TRAINING GPU_NUMBERS_FOR_TEST |
|
# See train.sh / test.sh for only training / test-evaluation. |
|
# After the evluation, run `gen_best_ep.py` to select the best ckpt from a specific metric (you choose it from Sm, wFm, HCE (DIS only)). |
|
``` |
|
|
|
#### Well-trained weights: |
|
|
|
Download the `BiRefNet-{TASK}-{EPOCH}.pth` from [[**stuff**](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM)]. Info of the corresponding (predicted\_maps/performance/training\_log) weights can be also found in folders like `exp-BiRefNet-{TASK_SETTINGS}` in the same directory. |
|
|
|
You can also download the weights from the release of this repo. |
|
|
|
The results might be a bit different from those in the original paper, you can see them in the `eval_results-BiRefNet-{TASK_SETTINGS}` folder in each `exp-xx`, we will update them in the following days. Due to the very high cost I used (A100-80G x 8) which many people cannot afford to (including myself....), I re-trained BiRefNet on a single A100-40G only and achieve the performance on the same level (even better). It means you can directly train the model on a single GPU with 36.5G+ memory. BTW, 5.5G GPU memory is needed for inference in 1024x1024. (I personally paid a lot for renting an A100-40G to re-train BiRefNet on the three tasks... T_T. Hope it can help you.) |
|
|
|
But if you have more and more powerful GPUs, you can set GPU IDs and increase the batch size in `config.py` to accelerate the training. We have made all this kind of things adaptive in scripts to seamlessly switch between single-card training and multi-card training. Enjoy it :) |
|
|
|
#### Some of my messages: |
|
|
|
This project was originally built for DIS only. But after the updates one by one, I made it larger and larger with many functions embedded together. Finally, you can **use it for any binary image segmentation tasks**, such as DIS/COD/SOD, medical image segmentation, anomaly segmentation, etc. You can eaily open/close below things (usually in `config.py`): |
|
+ Multi-GPU training: open/close with one variable. |
|
+ Backbone choices: Swin_v1, PVT_v2, ConvNets, ... |
|
+ Weighted losses: BCE, IoU, SSIM, MAE, Reg, ... |
|
+ Adversarial loss for binary segmentation (proposed in my previous work [MCCL](https://arxiv.org/pdf/2302.14485.pdf)). |
|
+ Training tricks: multi-scale supervision, freezing backbone, multi-scale input... |
|
+ Data collator: loading all in memory, smooth combination of different datasets for combined training and test. |
|
+ ... |
|
I really hope you enjoy this project and use it in more works to achieve new SOTAs. |
|
|
|
|
|
### Quantitative Results |
|
|
|
<p align="center"><img src="https://drive.google.com/thumbnail?id=184e84BwLuNu1FytSAQ2EnANZ0RFHKPip&sz=w1620" /></p> |
|
|
|
<p align="center"><img src="https://drive.google.com/thumbnail?id=1W0mi0ZiYbqsaGuohNXU8Gh7Zj4M3neFg&sz=w1620" /></p> |
|
|
|
|
|
|
|
### Qualitative Results |
|
|
|
<p align="center"><img src="https://drive.google.com/thumbnail?id=1TYZF8pVZc2V0V6g3ik4iAr9iKvJ8BNrf&sz=w1620" /></p> |
|
|
|
<p align="center"><img src="https://drive.google.com/thumbnail?id=1ZGHC32CAdT9cwRloPzOCKWCrVQZvUAlJ&sz=w1620" /></p> |
|
|
|
|
|
|
|
### Citation |
|
|
|
``` |
|
@article{zheng2024birefnet, |
|
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation}, |
|
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu}, |
|
journal={arXiv}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
|
|
|
|
## Contact |
|
|
|
Any question, discussion or even complaint, feel free to leave issues here or send me e-mails ([email protected]). |
|
|