Edit model card

mt5-small-task2-dataset3

This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3113
  • Accuracy: 0.704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3153 1.0 250 0.7513 0.526
0.8878 2.0 500 0.5870 0.576
0.7191 3.0 750 0.5021 0.578
0.5842 4.0 1000 0.4596 0.612
0.5085 5.0 1250 0.4158 0.62
0.4515 6.0 1500 0.3865 0.618
0.4086 7.0 1750 0.3755 0.648
0.3811 8.0 2000 0.3505 0.662
0.3449 9.0 2250 0.3366 0.678
0.3294 10.0 2500 0.3280 0.674
0.3146 11.0 2750 0.3201 0.702
0.305 12.0 3000 0.3146 0.69
0.2972 13.0 3250 0.3130 0.702
0.2819 14.0 3500 0.3106 0.696
0.2828 15.0 3750 0.3113 0.704

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
3
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ZhiguangHan/mt5-small-task2-dataset3

Base model

google/mt5-small
Finetuned
(302)
this model