|
import importlib |
|
import numpy as np |
|
import random |
|
import torch |
|
import torch.utils.data |
|
from copy import deepcopy |
|
from functools import partial |
|
from os import path as osp |
|
|
|
from r_basicsr.data.prefetch_dataloader import PrefetchDataLoader |
|
from r_basicsr.utils import get_root_logger, scandir |
|
from r_basicsr.utils.dist_util import get_dist_info |
|
from r_basicsr.utils.registry import DATASET_REGISTRY |
|
|
|
__all__ = ['build_dataset', 'build_dataloader'] |
|
|
|
|
|
|
|
data_folder = osp.dirname(osp.abspath(__file__)) |
|
dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')] |
|
|
|
_dataset_modules = [importlib.import_module(f'r_basicsr.data.{file_name}') for file_name in dataset_filenames] |
|
|
|
|
|
def build_dataset(dataset_opt): |
|
"""Build dataset from options. |
|
|
|
Args: |
|
dataset_opt (dict): Configuration for dataset. It must contain: |
|
name (str): Dataset name. |
|
type (str): Dataset type. |
|
""" |
|
dataset_opt = deepcopy(dataset_opt) |
|
dataset = DATASET_REGISTRY.get(dataset_opt['type'])(dataset_opt) |
|
logger = get_root_logger() |
|
logger.info(f'Dataset [{dataset.__class__.__name__}] - {dataset_opt["name"]} is built.') |
|
return dataset |
|
|
|
|
|
def build_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None): |
|
"""Build dataloader. |
|
|
|
Args: |
|
dataset (torch.utils.data.Dataset): Dataset. |
|
dataset_opt (dict): Dataset options. It contains the following keys: |
|
phase (str): 'train' or 'val'. |
|
num_worker_per_gpu (int): Number of workers for each GPU. |
|
batch_size_per_gpu (int): Training batch size for each GPU. |
|
num_gpu (int): Number of GPUs. Used only in the train phase. |
|
Default: 1. |
|
dist (bool): Whether in distributed training. Used only in the train |
|
phase. Default: False. |
|
sampler (torch.utils.data.sampler): Data sampler. Default: None. |
|
seed (int | None): Seed. Default: None |
|
""" |
|
phase = dataset_opt['phase'] |
|
rank, _ = get_dist_info() |
|
if phase == 'train': |
|
if dist: |
|
batch_size = dataset_opt['batch_size_per_gpu'] |
|
num_workers = dataset_opt['num_worker_per_gpu'] |
|
else: |
|
multiplier = 1 if num_gpu == 0 else num_gpu |
|
batch_size = dataset_opt['batch_size_per_gpu'] * multiplier |
|
num_workers = dataset_opt['num_worker_per_gpu'] * multiplier |
|
dataloader_args = dict( |
|
dataset=dataset, |
|
batch_size=batch_size, |
|
shuffle=False, |
|
num_workers=num_workers, |
|
sampler=sampler, |
|
drop_last=True) |
|
if sampler is None: |
|
dataloader_args['shuffle'] = True |
|
dataloader_args['worker_init_fn'] = partial( |
|
worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None |
|
elif phase in ['val', 'test']: |
|
dataloader_args = dict(dataset=dataset, batch_size=1, shuffle=False, num_workers=0) |
|
else: |
|
raise ValueError(f"Wrong dataset phase: {phase}. Supported ones are 'train', 'val' and 'test'.") |
|
|
|
dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False) |
|
dataloader_args['persistent_workers'] = dataset_opt.get('persistent_workers', False) |
|
|
|
prefetch_mode = dataset_opt.get('prefetch_mode') |
|
if prefetch_mode == 'cpu': |
|
num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1) |
|
logger = get_root_logger() |
|
logger.info(f'Use {prefetch_mode} prefetch dataloader: num_prefetch_queue = {num_prefetch_queue}') |
|
return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args) |
|
else: |
|
|
|
|
|
return torch.utils.data.DataLoader(**dataloader_args) |
|
|
|
|
|
def worker_init_fn(worker_id, num_workers, rank, seed): |
|
|
|
worker_seed = num_workers * rank + worker_id + seed |
|
np.random.seed(worker_seed) |
|
random.seed(worker_seed) |
|
|