Fill-Mask
Transformers
PyTorch
Safetensors
xmod
jvamvas commited on
Commit
216aa65
1 Parent(s): 5b093b2

Add usage example

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md CHANGED
@@ -31,6 +31,72 @@ SwissBERT contains the following language adapters:
31
  ## License
32
  Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  ## Bias, Risks, and Limitations
35
  - SwissBERT is mainly intended for tagging tokens in written text (e.g., named entity recognition, part-of-speech tagging), text classification, and the encoding of words, sentences or documents into fixed-size embeddings.
36
  SwissBERT is not designed for generating text.
 
31
  ## License
32
  Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
33
 
34
+ ## Usage (masked language modeling)
35
+
36
+ ```python
37
+ from transformers import pipeline
38
+
39
+ fill_mask = pipeline(model="ZurichNLP/swissbert")
40
+ ```
41
+
42
+ ### German example
43
+ ```python
44
+ fill_mask.model.set_default_language("de_CH")
45
+ fill_mask("Der schönste Kanton der Schweiz ist <mask>.")
46
+ ```
47
+ Output:
48
+ ```
49
+ [{'score': 0.1373230218887329,
50
+ 'token': 331,
51
+ 'token_str': 'Zürich',
52
+ 'sequence': 'Der schönste Kanton der Schweiz ist Zürich.'},
53
+ {'score': 0.08464793860912323,
54
+ 'token': 5903,
55
+ 'token_str': 'Appenzell',
56
+ 'sequence': 'Der schönste Kanton der Schweiz ist Appenzell.'},
57
+ {'score': 0.08250337839126587,
58
+ 'token': 10800,
59
+ 'token_str': 'Graubünden',
60
+ 'sequence': 'Der schönste Kanton der Schweiz ist Graubünden.'},
61
+ {'score': 0.07495423406362534,
62
+ 'token': 4833,
63
+ 'token_str': 'Schwyz',
64
+ 'sequence': 'Der schönste Kanton der Schweiz ist Schwyz.'},
65
+ {'score': 0.07253701984882355,
66
+ 'token': 3734,
67
+ 'token_str': 'Uri',
68
+ 'sequence': 'Der schönste Kanton der Schweiz ist Uri.'}]
69
+ ```
70
+
71
+ ### French example
72
+ ```python
73
+ fill_mask.model.set_default_language("fr_CH")
74
+ fill_mask("Je m'appelle <mask> Federer.")
75
+ ```
76
+ Output:
77
+ ```
78
+ [{'score': 0.9943694472312927,
79
+ 'token': 1371,
80
+ 'token_str': 'Roger',
81
+ 'sequence': "Je m'appelle Roger Federer."},
82
+ {'score': 0.00029945766436867416,
83
+ 'token': 689,
84
+ 'token_str': 'donc',
85
+ 'sequence': "Je m'appelle donc Federer."},
86
+ {'score': 0.00022272868955042213,
87
+ 'token': 71,
88
+ 'token_str': 'r',
89
+ 'sequence': "Je m'appeller Federer."},
90
+ {'score': 0.00020624867465812713,
91
+ 'token': 10739,
92
+ 'token_str': 'Robin',
93
+ 'sequence': "Je m'appelle Robin Federer."},
94
+ {'score': 0.00016592108295299113,
95
+ 'token': 15523,
96
+ 'token_str': 'Bâlois',
97
+ 'sequence': "Je m'appelle Bâlois Federer."}]
98
+ ```
99
+
100
  ## Bias, Risks, and Limitations
101
  - SwissBERT is mainly intended for tagging tokens in written text (e.g., named entity recognition, part-of-speech tagging), text classification, and the encoding of words, sentences or documents into fixed-size embeddings.
102
  SwissBERT is not designed for generating text.