Add usage example
Browse files
README.md
CHANGED
@@ -31,6 +31,72 @@ SwissBERT contains the following language adapters:
|
|
31 |
## License
|
32 |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
## Bias, Risks, and Limitations
|
35 |
- SwissBERT is mainly intended for tagging tokens in written text (e.g., named entity recognition, part-of-speech tagging), text classification, and the encoding of words, sentences or documents into fixed-size embeddings.
|
36 |
SwissBERT is not designed for generating text.
|
|
|
31 |
## License
|
32 |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
|
33 |
|
34 |
+
## Usage (masked language modeling)
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import pipeline
|
38 |
+
|
39 |
+
fill_mask = pipeline(model="ZurichNLP/swissbert")
|
40 |
+
```
|
41 |
+
|
42 |
+
### German example
|
43 |
+
```python
|
44 |
+
fill_mask.model.set_default_language("de_CH")
|
45 |
+
fill_mask("Der schönste Kanton der Schweiz ist <mask>.")
|
46 |
+
```
|
47 |
+
Output:
|
48 |
+
```
|
49 |
+
[{'score': 0.1373230218887329,
|
50 |
+
'token': 331,
|
51 |
+
'token_str': 'Zürich',
|
52 |
+
'sequence': 'Der schönste Kanton der Schweiz ist Zürich.'},
|
53 |
+
{'score': 0.08464793860912323,
|
54 |
+
'token': 5903,
|
55 |
+
'token_str': 'Appenzell',
|
56 |
+
'sequence': 'Der schönste Kanton der Schweiz ist Appenzell.'},
|
57 |
+
{'score': 0.08250337839126587,
|
58 |
+
'token': 10800,
|
59 |
+
'token_str': 'Graubünden',
|
60 |
+
'sequence': 'Der schönste Kanton der Schweiz ist Graubünden.'},
|
61 |
+
{'score': 0.07495423406362534,
|
62 |
+
'token': 4833,
|
63 |
+
'token_str': 'Schwyz',
|
64 |
+
'sequence': 'Der schönste Kanton der Schweiz ist Schwyz.'},
|
65 |
+
{'score': 0.07253701984882355,
|
66 |
+
'token': 3734,
|
67 |
+
'token_str': 'Uri',
|
68 |
+
'sequence': 'Der schönste Kanton der Schweiz ist Uri.'}]
|
69 |
+
```
|
70 |
+
|
71 |
+
### French example
|
72 |
+
```python
|
73 |
+
fill_mask.model.set_default_language("fr_CH")
|
74 |
+
fill_mask("Je m'appelle <mask> Federer.")
|
75 |
+
```
|
76 |
+
Output:
|
77 |
+
```
|
78 |
+
[{'score': 0.9943694472312927,
|
79 |
+
'token': 1371,
|
80 |
+
'token_str': 'Roger',
|
81 |
+
'sequence': "Je m'appelle Roger Federer."},
|
82 |
+
{'score': 0.00029945766436867416,
|
83 |
+
'token': 689,
|
84 |
+
'token_str': 'donc',
|
85 |
+
'sequence': "Je m'appelle donc Federer."},
|
86 |
+
{'score': 0.00022272868955042213,
|
87 |
+
'token': 71,
|
88 |
+
'token_str': 'r',
|
89 |
+
'sequence': "Je m'appeller Federer."},
|
90 |
+
{'score': 0.00020624867465812713,
|
91 |
+
'token': 10739,
|
92 |
+
'token_str': 'Robin',
|
93 |
+
'sequence': "Je m'appelle Robin Federer."},
|
94 |
+
{'score': 0.00016592108295299113,
|
95 |
+
'token': 15523,
|
96 |
+
'token_str': 'Bâlois',
|
97 |
+
'sequence': "Je m'appelle Bâlois Federer."}]
|
98 |
+
```
|
99 |
+
|
100 |
## Bias, Risks, and Limitations
|
101 |
- SwissBERT is mainly intended for tagging tokens in written text (e.g., named entity recognition, part-of-speech tagging), text classification, and the encoding of words, sentences or documents into fixed-size embeddings.
|
102 |
SwissBERT is not designed for generating text.
|