license: apache-2.0
base_model:
- Zyphra/Zamba2-2.7B
library_name: transformers
Model Card for Zamba2-7B-Instruct
Zamba2-7B-Instruct is obtained from Zamba2-7B by fine-tuning on instruction-following and chat datasets.
Zamba2-7B-Instruct is a hybrid model composed of state-space (Mamba2) and transformer blocks.
Zamba2-7B-Instruct long-context has been extended from 4k to 16k context by adjusting the rope frequency in the attention blocks.
Quick start
Prerequisites
To download Zamba2-2.7B-instruct, clone Zyphra's fork of transformers:
git clone https://github.com/Zyphra/transformers_zamba2.git
cd transformers_zamba2
- Install the repository:
pip install -e .
pip install accelerate
Inference
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Instantiate model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-2.7B-instruct")
model = AutoModelForCausalLM.from_pretrained("Zyphra/Zamba2-2.7B-instruct", device_map="cuda", torch_dtype=torch.bfloat16)
# Format the input as a chat template
user_turn_1 = "In one season a flower blooms three times. In one year, there is one blooming season. How many times do two flowers bloom in two years? Please include your logic."
assistant_turn_1 = "In one season, a flower blooms three times. In one year, there is one blooming season. Therefore, in two years, there are two blooming seasons. Since each flower blooms three times in one season, in two blooming seasons, each flower will bloom six times. Since there are two flowers, the total number of times they will bloom in two years is 12."
user_turn_2 = "How many times do the two flowers blossom in three years?"
sample = [{'role': 'user', 'content': user_turn_1}, {'role': 'assistant', 'content': assistant_turn_1}, {'role': 'user', 'content': user_turn_2}]
chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)
# Tokenize input and generate output
input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=150, return_dict_in_generate=False, output_scores=False, use_cache=True, num_beams=1, do_sample=False)
print((tokenizer.decode(outputs[0])))
To use the context-extended version of Zamba, please load the model with use_long_context=True
, i.e.:
model = AutoModelForCausalLM.from_pretrained("Zyphra/Zamba2-7B", device_map="cuda", torch_dtype=torch.bfloat16, use_long_context=True)
Performance
Zamba2-7B-Instruct punches dramatically above its weight, achieving extremely strong instruction-following benchmark scores.
TODO
Moreover, due to its unique hybrid SSM architecture, Zamba2-7B-Instruct achieves extremely low inference latency and rapid generation with a significantly smaller memory footprint than comparable transformer-based models.
Zamba2-7B-Instruct's high performance, strong instruction-following and reasoning capabilities for its size makes it an ideal generalist small model for a wide range of applications.
Model Details
Zamba2-7B-Instruct utilizes and extends our original Zamba hybrid SSM-attention architecture. The core Zamba architecture consists of a backbone of Mamba2 layers interleaved with one or more shared attention layers (one shared attention in Zamba1, two in Zamba2). This attention has shared weights to minimize the parameter cost of the model. We find that concatenating the original model embeddings to the input to this attention block improves performance, likely due to better maintenance of information across depth. The Zamba2 architecture also applies LoRA projection matrices to the shared MLP to gain some additional expressivity in each block and allow each shared block to specialize slightly to its own unique position while keeping the additional parameter overhead small.
Long Context
Our Zamba2-7B instruct features an experimental long-context mode which extends the context from 4k to 16k context. This was achieved by adjusting the rotation frequency of the rotary position embeddings.
In Needle-In-A-Haystack tests, we can observe that Zamba2-7B-Instruct can find the needle with an extremely high success rate up to and slightly beyond 16k context with performance falling off sharply at about 18k context. In future versions we aim to extend this context length significantly.
Note: this is a temporary HuggingFace implementation of Zamba2-7B. It may not yet be fully compatible with all frameworks and tools intended to interface with HuggingFace models.
A standalone Pytorch implementation of Zamba2-7B may be found here.