msi-nat-mini / README.md
aaa12963337's picture
End of training
74ebbdc
|
raw
history blame
2.86 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: msi-nat-mini
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6308708414872799
          - name: F1
            type: f1
            value: 0.47632740072381147
          - name: Precision
            type: precision
            value: 0.6193914388860238
          - name: Recall
            type: recall
            value: 0.3869512686266613

msi-nat-mini

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8600
  • Accuracy: 0.6309
  • F1: 0.4763
  • Precision: 0.6194
  • Recall: 0.3870

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5496 1.0 2015 0.7573 0.5955 0.4196 0.5559 0.3369
0.4807 2.0 4031 0.7416 0.6309 0.4981 0.6074 0.4222
0.4235 3.0 6047 0.7680 0.6325 0.5047 0.6076 0.4317
0.3879 4.0 8063 0.7875 0.6339 0.4923 0.6179 0.4092
0.3702 5.0 10078 0.7923 0.6383 0.5128 0.6168 0.4388
0.3568 6.0 12094 0.8311 0.6313 0.4969 0.6090 0.4197
0.3661 7.0 14110 0.8345 0.6316 0.4843 0.6166 0.3987
0.354 8.0 16126 0.8501 0.6305 0.4800 0.6162 0.3931
0.3569 9.0 18141 0.8552 0.6318 0.4809 0.6193 0.3931
0.3536 10.0 20150 0.8600 0.6309 0.4763 0.6194 0.3870

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0