msi-nat-mini / README.md
aaa12963337's picture
End of training
fa013f5
|
raw
history blame
2.86 kB
---
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: msi-nat-mini
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8460220784164446
- name: F1
type: f1
value: 0.8017318846499469
- name: Precision
type: precision
value: 0.8296559303406882
- name: Recall
type: recall
value: 0.7756263336758081
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# msi-nat-mini
This model was trained from scratch on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3451
- Accuracy: 0.8460
- F1: 0.8017
- Precision: 0.8297
- Recall: 0.7756
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.5705 | 1.0 | 1970 | 0.5230 | 0.7410 | 0.6588 | 0.6988 | 0.6232 |
| 0.4805 | 2.0 | 3941 | 0.4447 | 0.7924 | 0.7298 | 0.7640 | 0.6986 |
| 0.4521 | 3.0 | 5911 | 0.4090 | 0.8107 | 0.7518 | 0.7936 | 0.7141 |
| 0.4343 | 4.0 | 7882 | 0.3878 | 0.8239 | 0.7768 | 0.7907 | 0.7634 |
| 0.4003 | 5.0 | 9852 | 0.3720 | 0.8328 | 0.7850 | 0.8113 | 0.7604 |
| 0.3887 | 6.0 | 11823 | 0.3620 | 0.8376 | 0.7875 | 0.8295 | 0.7496 |
| 0.3709 | 7.0 | 13793 | 0.3506 | 0.8435 | 0.7977 | 0.8286 | 0.7690 |
| 0.3686 | 8.0 | 15764 | 0.3473 | 0.8461 | 0.8025 | 0.8271 | 0.7793 |
| 0.3819 | 9.0 | 17734 | 0.3422 | 0.8476 | 0.8052 | 0.8270 | 0.7845 |
| 0.3838 | 10.0 | 19700 | 0.3451 | 0.8460 | 0.8017 | 0.8297 | 0.7756 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0