paligemma-3b-mix-224-gguf / paligemma_to_gguf.py
abetlen's picture
Update paligemma_to_gguf.py
e3cd295 verified
"""Copyright (c) 2024 Andrei Betlen
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."""
import os
import json
import typing
import pathlib
import argparse
import numpy as np
import numpy.typing as npt
import gguf
from safetensors import safe_open
class SafetensorsIndexFile(typing.TypedDict):
weight_map: typing.Dict[str, str]
class SafetensorsIndex:
def __init__(self, index_file_path: str):
directory = os.path.dirname(index_file_path)
self.index = typing.cast(SafetensorsIndexFile, json.load(open(index_file_path)))
self.weight_map = self.index["weight_map"]
files = set(self.weight_map.values())
self.tensors = {file: safe_open(os.path.join(directory, file), framework="np") for file in files}
def get_tensor(self, key: str) -> npt.NDArray[np.float32]:
return typing.cast(npt.NDArray[np.float32], self.tensors[self.weight_map[key]].get_tensor(key)) # type: ignore
def k(raw_key: str, arch: str) -> str:
return raw_key.format(arch=arch)
def does_token_look_special(token: typing.Union[str, bytes]) -> bool:
if isinstance(token, (bytes, bytearray)):
token_text = token.decode(encoding="utf-8")
elif isinstance(token, memoryview):
token_text = token.tobytes().decode(encoding="utf-8")
else:
token_text = token
# Some models mark some added tokens which ought to be control tokens as not special.
# (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
seems_special = token_text in (
"<pad>", # deepseek-coder
"<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
)
seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
# TODO: should these be marked as UNUSED instead? (maybe not)
seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
return seems_special
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-d",
"--dir-model",
required=True,
help="path to directory containing the tokenizer",
)
args = parser.parse_args()
dir_model = pathlib.Path(args.dir_model)
# set model name to folder name
name = dir_model.name
tensors = SafetensorsIndex((dir_model / "model.safetensors.index.json").as_posix())
config = json.load(open(dir_model / "config.json"))
text_config = {
"max_position_embeddings": 8192,
"rms_norm_eps": 1e-6,
"head_dim": 256
}
text_config.update(config["text_config"])
vision_config = config["vision_config"]
preprocessor_config = json.load(open(dir_model / "preprocessor_config.json"))
### Vision model
ftype = 1 # fp16
fname_middle = "mmproj-"
has_text_encoder = False
has_llava_projector = True
n_layers_clip = vision_config["num_hidden_layers"]
fname_out = f"{name}-mmproj-f16.gguf"
fout = gguf.GGUFWriter(fname_out, arch="clip")
fout.add_bool("clip.has_text_encoder", False)
fout.add_bool("clip.has_vision_encoder", True)
fout.add_bool("clip.has_llava_projector", True)
fout.add_file_type(ftype) # fp16
model_name = f"google/{name}"
fout.add_name(model_name)
fout.add_description("image encoder for " + model_name)
fout.add_string("clip.projector_type", "mlp")
image_size = vision_config.get("image_size", preprocessor_config["size"]["height"])
# vision model hparams
VISION = "clip.vision"
fout.add_uint32("clip.vision.image_size", image_size)
fout.add_uint32("clip.vision.patch_size", vision_config["patch_size"])
fout.add_uint32(k(gguf.KEY_EMBEDDING_LENGTH, VISION), vision_config["hidden_size"])
fout.add_uint32(k(gguf.KEY_FEED_FORWARD_LENGTH, VISION), vision_config["intermediate_size"])
fout.add_uint32("clip.vision.projection_dim", vision_config["projection_dim"])
fout.add_uint32(k(gguf.KEY_ATTENTION_HEAD_COUNT, VISION), vision_config["num_attention_heads"])
fout.add_float32(k(gguf.KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
fout.add_uint32(k(gguf.KEY_BLOCK_COUNT, VISION), n_layers_clip + 1)
fout.add_array("clip.vision.image_mean", preprocessor_config["image_mean"])
fout.add_array("clip.vision.image_std", preprocessor_config["image_std"])
fout.add_bool("clip.use_gelu", vision_config["projector_hidden_act"] == "gelu")
fout.add_float32("clip.embeddings_scale", 1.0 / (config["projection_dim"]**0.5))
# vision projection
fout.add_tensor(
"mm.0.weight",
tensors.get_tensor("multi_modal_projector.linear.weight").astype(np.float16),
)
fout.add_tensor(
"mm.0.bias",
tensors.get_tensor("multi_modal_projector.linear.bias").astype(np.float32),
)
# encoder (siglip)
fout.add_tensor(
"v.position_embd.weight",
tensors.get_tensor("vision_tower.vision_model.embeddings.position_embedding.weight").astype(np.float16),
)
fout.add_tensor(
"v.patch_embd.weight",
tensors.get_tensor("vision_tower.vision_model.embeddings.patch_embedding.weight")
.reshape(vision_config["hidden_size"], 3, vision_config["patch_size"], vision_config["patch_size"])
.astype(np.float16),
)
fout.add_tensor(
"v.patch_embd.bias",
tensors.get_tensor("vision_tower.vision_model.embeddings.patch_embedding.bias").astype(np.float32),
)
fout.add_tensor(
"v.post_ln.weight",
tensors.get_tensor("vision_tower.vision_model.post_layernorm.weight").astype(np.float32),
)
fout.add_tensor(
"v.post_ln.bias",
tensors.get_tensor("vision_tower.vision_model.post_layernorm.bias").astype(np.float32),
)
def blk_tensor(i: int, name: str):
return tensors.get_tensor(
rf"vision_tower.vision_model.encoder.layers.{i}.{name}"
)
def add_tensor(blk_id: int, gguf_id: typing.Optional[int] = None):
if gguf_id is None:
gguf_id = blk_id
q_w = blk_tensor(blk_id, "self_attn.q_proj.weight")
k_w = blk_tensor(blk_id, "self_attn.k_proj.weight")
v_w = blk_tensor(blk_id, "self_attn.v_proj.weight")
q_b = blk_tensor(blk_id, "self_attn.q_proj.bias")
k_b = blk_tensor(blk_id, "self_attn.k_proj.bias")
v_b = blk_tensor(blk_id, "self_attn.v_proj.bias")
fout.add_tensor(f"v.blk.{gguf_id}.attn_q.weight", q_w.astype(np.float16))
fout.add_tensor(f"v.blk.{gguf_id}.attn_q.bias", q_b.astype(np.float32))
fout.add_tensor(f"v.blk.{gguf_id}.attn_k.weight", k_w.astype(np.float16))
fout.add_tensor(f"v.blk.{gguf_id}.attn_k.bias", k_b.astype(np.float32))
fout.add_tensor(f"v.blk.{gguf_id}.attn_v.weight", v_w.astype(np.float16))
fout.add_tensor(f"v.blk.{gguf_id}.attn_v.bias", v_b.astype(np.float32))
fout.add_tensor(
f"v.blk.{gguf_id}.attn_out.weight",
blk_tensor(blk_id, "self_attn.out_proj.weight").astype(np.float16),
)
fout.add_tensor(
f"v.blk.{gguf_id}.attn_out.bias",
blk_tensor(blk_id, "self_attn.out_proj.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ln1.weight",
blk_tensor(blk_id, "layer_norm1.weight").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ln1.bias",
blk_tensor(blk_id, "layer_norm1.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ffn_down.weight",
blk_tensor(blk_id, "mlp.fc1.weight").astype(np.float16),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ffn_down.bias",
blk_tensor(blk_id, "mlp.fc1.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ffn_up.weight",
blk_tensor(blk_id, "mlp.fc2.weight").astype(np.float16),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ffn_up.bias",
blk_tensor(blk_id, "mlp.fc2.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ln2.weight",
blk_tensor(blk_id, "layer_norm2.weight").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ln2.bias",
blk_tensor(blk_id, "layer_norm2.bias").astype(np.float32),
)
for i in range(n_layers_clip):
add_tensor(i)
# Duplicate the last block (llava-cli skips over this)
add_tensor(n_layers_clip - 1, n_layers_clip)
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
print(f"GGUF written to {fname_out}")
### Text model
# general GGUF init
fname_out = f"{name}-text-model-f16.gguf"
fout = gguf.GGUFWriter(fname_out, arch="gemma")
ftype = 1
block_count = text_config["num_hidden_layers"]
fout.add_name(name)
fout.add_context_length(text_config["max_position_embeddings"])
fout.add_embedding_length(text_config["hidden_size"])
fout.add_block_count(block_count)
fout.add_feed_forward_length(text_config["intermediate_size"])
fout.add_head_count(text_config["num_attention_heads"])
fout.add_head_count_kv(text_config.get("num_key_value_heads") or text_config["num_attention_heads"])
fout.add_layer_norm_rms_eps(text_config["rms_norm_eps"])
fout.add_key_length(text_config["head_dim"])
fout.add_value_length(text_config["head_dim"])
fout.add_file_type(ftype)
# fout.add_add_bos_token(True)
### Tokenizer
# Taken from _set_vocab_sentencepiece
from enum import IntEnum
class SentencePieceTokenTypes(IntEnum):
NORMAL = 1
UNKNOWN = 2
CONTROL = 3
USER_DEFINED = 4
UNUSED = 5
BYTE = 6
from sentencepiece import SentencePieceProcessor
tokenizer_path = dir_model / 'tokenizer.model'
tokens: typing.List[bytes] = []
scores: typing.List[float] = []
toktypes: typing.List[int] = []
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = config["vocab_size"]
tokens: typing.List[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: typing.List[float] = [-10000.0] * vocab_size
toktypes: typing.List[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
added_tokens_file = dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
added_tokens_json = json.load(f)
for key in added_tokens_json:
token_id = added_tokens_json[key]
if (token_id >= vocab_size):
print(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
continue
tokens[token_id] = key.encode("utf-8")
scores[token_id] = -1000.0
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
tokenizer_config_file = dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
for token_id, token_data in added_tokens_decoder.items():
token_id = int(token_id)
token: str = token_data["content"]
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
if tokens[token_id] != token.encode("utf-8"):
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
if token_data.get("special") or does_token_look_special(token):
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
else:
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
scores[token_id] = -1000.0
tokens[token_id] = token.encode("utf-8")
if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
print(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
for i in range(1, pad_count + 1):
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.UNUSED)
fout.add_tokenizer_model("llama")
fout.add_tokenizer_pre("default")
fout.add_token_list(tokens)
fout.add_token_scores(scores)
fout.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(fout)
fout.add_add_space_prefix(False)
### Text model
fout.add_tensor(
"token_embd.weight",
tensors.get_tensor("language_model.model.embed_tokens.weight").astype(np.float16),
)
for i in range(text_config["num_hidden_layers"]):
fout.add_tensor(
f"blk.{i}.attn_norm.weight",
tensors.get_tensor(f"language_model.model.layers.{i}.input_layernorm.weight").astype(
np.float32
# https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
) + 1,
)
fout.add_tensor(
f"blk.{i}.ffn_down.weight",
tensors.get_tensor(f"language_model.model.layers.{i}.mlp.down_proj.weight").astype(
np.float16
),
)
fout.add_tensor(
f"blk.{i}.ffn_gate.weight",
tensors.get_tensor(f"language_model.model.layers.{i}.mlp.gate_proj.weight").astype(
np.float16
),
)
fout.add_tensor(
f"blk.{i}.ffn_up.weight",
tensors.get_tensor(f"language_model.model.layers.{i}.mlp.up_proj.weight").astype(
np.float16
),
)
fout.add_tensor(
f"blk.{i}.ffn_norm.weight",
tensors.get_tensor(f"language_model.model.layers.{i}.post_attention_layernorm.weight").astype(
np.float32
) + 1,
)
fout.add_tensor(
f"blk.{i}.attn_k.weight",
tensors.get_tensor(
f"language_model.model.layers.{i}.self_attn.k_proj.weight"
).astype(np.float16),
)
fout.add_tensor(
f"blk.{i}.attn_output.weight",
tensors.get_tensor(
f"language_model.model.layers.{i}.self_attn.o_proj.weight"
).astype(np.float16),
)
fout.add_tensor(
f"blk.{i}.attn_q.weight",
tensors.get_tensor(
f"language_model.model.layers.{i}.self_attn.q_proj.weight"
).astype(np.float16),
)
fout.add_tensor(
f"blk.{i}.attn_v.weight",
tensors.get_tensor(
f"language_model.model.layers.{i}.self_attn.v_proj.weight"
).astype(np.float16),
)
fout.add_tensor(
"output_norm.weight",
tensors.get_tensor("language_model.model.norm.weight").astype(np.float32) + 1,
)
# save gguf
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
print(f"GGUF written to {fname_out}")