File size: 6,072 Bytes
9eb86cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
from groq import Groq

# Step 1: Scrape free courses from Analytics Vidhya
def fetch_free_courses():
    url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
    response = requests.get(url)
    soup = BeautifulSoup(response.content, 'html.parser')

    courses_data = []
    
    # Extract course details
    for card in soup.select('header.course-card__img-container'):
        image_element = card.find('img', class_='course-card__img')
        
        if image_element:
            title = image_element.get('alt')
            img_url = image_element.get('src')
            
            link = card.find_previous('a')
            if link:
                course_link = link.get('href')
                if not course_link.startswith('http'):
                    course_link = 'https://courses.analyticsvidhya.com' + course_link

                courses_data.append({
                    'title': title,
                    'image_url': img_url,
                    'course_link': course_link
                })
    return courses_data

courses = fetch_free_courses()

# Step 2: Load data into a DataFrame
df = pd.DataFrame(courses)

client = Groq()

# Course search function using Groq
def course_recommendation(query):
    try:
        print(f"Search query: {query}")
        print(f"Total available courses: {len(df)}")

        # Prompt construction for Groq
        prompt = f"""
        Based on the query: "{query}",
        Rank the courses below based on relevance (0 to 1), with 1 being highly relevant.
        Filter out courses with relevance scores below 0.5.
        
        Courses:
        {df['title'].to_string(index=False)}
        """

        print("Sending query to Groq for recommendation...")
        # Sending the request to Groq for results
        response = client.chat.completions.create(
            model="mixtral-8x7b-32768",
            messages=[
                {"role": "system", "content": "You are a course recommendation assistant."},
                {"role": "user", "content": prompt}
            ],
            temperature=0.3,
            max_tokens=800
        )
        print("Response received from Groq.")

        # Parse the Groq response
        recommended_courses = []
        content = response.choices[0].message.content
        print("Groq's response:\n", content)

        for line in content.split('\n'):
            if line.startswith('Title:'):
                course_title = line.split('Title:')[1].strip()
            elif line.startswith('Relevance:'):
                score = float(line.split('Relevance:')[1].strip())
                if score >= 0.5:
                    matching_course = df[df['title'] == course_title]
                    if not matching_course.empty:
                        course_data = matching_course.iloc[0]
                        recommended_courses.append({
                            'title': course_title,
                            'image_url': course_data['image_url'],
                            'course_link': course_data['course_link'],
                            'score': score
                        })
        
        return sorted(recommended_courses, key=lambda x: x['score'], reverse=True)[:10]

    except Exception as e:
        print(f"Error during course search: {e}")
        return []

# Gradio function to search and display courses
def gradio_search_interface(query):
    results = course_recommendation(query)
    
    if results:
        html_output = '<div class="results-section">'
        for course in results:
            html_output += f"""
            <div class="course-item">
                <img src="{course['image_url']}" alt="{course['title']}" class="course-thumbnail"/>
                <div class="course-details">
                    <h4>{course['title']}</h4>
                    <p>Relevance: {round(course['score'] * 100, 2)}%</p>
                    <a href="{course['course_link']}" target="_blank" class="course-link-button">Explore Course</a>
                </div>
            </div>"""
        html_output += '</div>'
        return html_output
    else:
        return '<p class="no-courses-message">No matching courses found. Try another search.</p>'

# Custom CSS to make the interface attractive
custom_css = """
body {
    background-color: #eaeef3;
    font-family: 'Montserrat', sans-serif;
}
.results-section {
    display: flex;
    flex-wrap: wrap;
    gap: 20px;
}
.course-item {
    background-color: white;
    border-radius: 12px;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    overflow: hidden;
    width: 48%;
    transition: transform 0.3s ease;
}
.course-item:hover {
    transform: translateY(-10px);
}
.course-thumbnail {
    width: 100%;
    height: 160px;
    object-fit: cover;
}
.course-details {
    padding: 15px;
    text-align: center;
}
.course-details h4 {
    font-size: 18px;
    color: #333;
    margin: 10px 0;
}
.course-details p {
    color: #555;
    font-size: 14px;
}
.course-link-button {
    display: inline-block;
    background-color: #ff5733;
    color: white;
    padding: 8px 16px;
    text-decoration: none;
    border-radius: 6px;
    margin-top: 10px;
}
.course-link-button:hover {
    background-color: #c44524;
}
.no-courses-message {
    text-align: center;
    color: #777;
    font-size: 16px;
}
"""

# Setting up the Gradio interface
iface = gr.Interface(
    fn=gradio_search_interface,
    inputs=gr.Textbox(label="Search for a course", placeholder="e.g., Python for data analysis, ML basics"),
    outputs=gr.HTML(label="Course Results"),
    title="Analytics Vidhya Course Finder",
    description="Discover the best free courses from Analytics Vidhya tailored to your query.",
    theme="compact",
    css=custom_css,
    examples=[
        ["Data Science for Beginners"],
        ["Python Programming"],
        ["Advanced Machine Learning"],
        ["Business Analytics"],
    ]
)

# Run the Gradio interface
if __name__ == "__main__":
    iface.launch()