Abhinav Kulkarni
Updated README
b55852d
metadata
license: apache-2.0
tags:
  - AWQ
inference: false

CodeGen2.5-7B-multi (4-bit 128g AWQ Quantized)

Title: CodeGen2.5: Small, but mighty

Authors: Erik Nijkamp*, Hiroaki Hayashi*, Yingbo Zhou, Caiming Xiong

(* equal contribution)

Model description

CodeGen2.5 is a family of autoregressive language models for program synthesis.

This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click here.

Model Date

July 5, 2023

Model License

Please refer to original CodeGen2.5 model license (link).

Please refer to the AWQ quantization license (link).

CUDA Version

This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of 8.0 or higher.

For Docker users, the nvcr.io/nvidia/pytorch:23.06-py3 image is runtime v12.1 but otherwise the same as the configuration above and has also been verified to work.

How to Use

git clone https://github.com/mit-han-lab/llm-awq \
&& cd llm-awq \
&& git checkout f084f40bd996f3cf3a0633c1ad7d9d476c318aaa \
&& pip install -e . \
&& cd awq/kernels \
&& python setup.py install
import time
import torch
from awq.quantize.quantizer import real_quantize_model_weight
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, TextStreamer
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from huggingface_hub import snapshot_download

model_name = "abhinavkulkarni/Salesforce-codegen25-7b-multi-w4-g128-awq"

# Config
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)

# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, trust_remote_code=True)

# Model
w_bit = 4
q_config = {
    "zero_point": True,
    "q_group_size": 128,
}

load_quant = snapshot_download(model_name)

with init_empty_weights():
    model = AutoModelForCausalLM.from_config(config=config, 
                                                 torch_dtype=torch.float16, trust_remote_code=True)

real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True)
model.tie_weights()

model = load_checkpoint_and_dispatch(model, load_quant, device_map="balanced")

# Inference
prompt = f'''def hello_world():\n'''

input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda()
output = model.generate(
    inputs=input_ids, 
    temperature=0.7,
    max_new_tokens=512,
    top_p=0.15,
    top_k=0,
    repetition_penalty=1.1,
    eos_token_id=tokenizer.eos_token_id,
    streamer=streamer)

Evaluation

This evaluation was done using LM-Eval.

CodeGen2.5-7B-multi

Task Version Metric Value Stderr
wikitext 1 word_perplexity 28.8147
byte_perplexity 1.8748
bits_per_byte 0.9067

CodeGen2.5-7B-multi (4-bit 128-group AWQ)

Task Version Metric Value Stderr
wikitext 1 word_perplexity 29.4323
byte_perplexity 1.8823
bits_per_byte 0.9125

Acknowledgements

Please cite CodeGen2 paper:

@article{Nijkamp2023codegen2,
  title={CodeGen2: Lessons for Training LLMs on Programming and Natural Languages},
  author={Nijkamp, Erik and Hayashi, Hiroaki and Xiong, Caiming and Savarese, Silvio and Zhou, Yingbo},
  journal={arXiv preprint},
  year={2023}
}

The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper:

@article{lin2023awq,
  title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
  author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
  journal={arXiv},
  year={2023}
}