acmc's picture
End of training
1208d45 verified
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.1
model-index:
- name: mistral-7b-instruct-autextification2024
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-7b-instruct-autextification2024
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8230
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7076 | 0.0 | 10 | 2.0916 |
| 1.54 | 0.01 | 20 | 2.0382 |
| 2.0394 | 0.01 | 30 | 1.9987 |
| 2.3388 | 0.01 | 40 | 1.9706 |
| 3.0378 | 0.02 | 50 | 1.9866 |
| 1.511 | 0.02 | 60 | 1.9453 |
| 1.6499 | 0.02 | 70 | 1.9309 |
| 1.9693 | 0.03 | 80 | 1.9168 |
| 2.2389 | 0.03 | 90 | 1.9169 |
| 2.7812 | 0.03 | 100 | 1.9367 |
| 1.542 | 0.04 | 110 | 1.9202 |
| 1.574 | 0.04 | 120 | 1.9088 |
| 1.9916 | 0.04 | 130 | 1.8989 |
| 2.081 | 0.05 | 140 | 1.8862 |
| 2.768 | 0.05 | 150 | 1.9108 |
| 1.4699 | 0.05 | 160 | 1.8984 |
| 1.5366 | 0.06 | 170 | 1.8877 |
| 2.0133 | 0.06 | 180 | 1.8812 |
| 2.2186 | 0.06 | 190 | 1.8795 |
| 2.7003 | 0.07 | 200 | 1.8882 |
| 1.5169 | 0.07 | 210 | 1.8720 |
| 1.5444 | 0.07 | 220 | 1.8801 |
| 1.726 | 0.08 | 230 | 1.8732 |
| 2.0348 | 0.08 | 240 | 1.8657 |
| 2.6121 | 0.09 | 250 | 1.8702 |
| 1.5258 | 0.09 | 260 | 1.8655 |
| 1.5423 | 0.09 | 270 | 1.8733 |
| 1.8095 | 0.1 | 280 | 1.8505 |
| 2.0462 | 0.1 | 290 | 1.8455 |
| 2.5442 | 0.1 | 300 | 1.8552 |
| 1.4565 | 0.11 | 310 | 1.8586 |
| 1.4278 | 0.11 | 320 | 1.8491 |
| 1.7626 | 0.11 | 330 | 1.8358 |
| 1.9469 | 0.12 | 340 | 1.8427 |
| 2.5378 | 0.12 | 350 | 1.8580 |
| 1.4248 | 0.12 | 360 | 1.8499 |
| 1.586 | 0.13 | 370 | 1.8378 |
| 1.9637 | 0.13 | 380 | 1.8311 |
| 1.9733 | 0.13 | 390 | 1.8352 |
| 2.6789 | 0.14 | 400 | 1.8543 |
| 1.4521 | 0.14 | 410 | 1.8411 |
| 1.4683 | 0.14 | 420 | 1.8428 |
| 1.862 | 0.15 | 430 | 1.8331 |
| 2.0159 | 0.15 | 440 | 1.8304 |
| 2.5851 | 0.15 | 450 | 1.8385 |
| 1.4911 | 0.16 | 460 | 1.8309 |
| 1.5463 | 0.16 | 470 | 1.8262 |
| 1.8454 | 0.16 | 480 | 1.8137 |
| 2.0086 | 0.17 | 490 | 1.8143 |
| 2.6965 | 0.17 | 500 | 1.8230 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2