canine-mouse-enhancers
This model is a fine-tuned version of google/canine-c on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9641
- Accuracy: 0.7727
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 242 | 0.6476 | 0.6281 |
No log | 2.0 | 484 | 0.6080 | 0.6860 |
0.6372 | 3.0 | 726 | 0.5989 | 0.7231 |
0.6372 | 4.0 | 968 | 0.6285 | 0.6694 |
0.5955 | 5.0 | 1210 | 0.5904 | 0.6860 |
0.5955 | 6.0 | 1452 | 0.5782 | 0.7107 |
0.5812 | 7.0 | 1694 | 0.5845 | 0.6983 |
0.5812 | 8.0 | 1936 | 0.6186 | 0.6983 |
0.5901 | 9.0 | 2178 | 0.5814 | 0.7231 |
0.5901 | 10.0 | 2420 | 0.6152 | 0.7355 |
0.5535 | 11.0 | 2662 | 0.5556 | 0.7438 |
0.5535 | 12.0 | 2904 | 0.5476 | 0.7479 |
0.5566 | 13.0 | 3146 | 0.6583 | 0.7107 |
0.5566 | 14.0 | 3388 | 0.5571 | 0.7521 |
0.5419 | 15.0 | 3630 | 0.6231 | 0.7231 |
0.5419 | 16.0 | 3872 | 0.6068 | 0.7603 |
0.546 | 17.0 | 4114 | 0.6581 | 0.7273 |
0.546 | 18.0 | 4356 | 0.6350 | 0.7438 |
0.5359 | 19.0 | 4598 | 0.7081 | 0.7438 |
0.5359 | 20.0 | 4840 | 0.6711 | 0.7521 |
0.5262 | 21.0 | 5082 | 0.8095 | 0.7190 |
0.5262 | 22.0 | 5324 | 0.7282 | 0.7521 |
0.5666 | 23.0 | 5566 | 0.7604 | 0.7479 |
0.5666 | 24.0 | 5808 | 0.8097 | 0.7521 |
0.5456 | 25.0 | 6050 | 0.8513 | 0.7521 |
0.5456 | 26.0 | 6292 | 0.7954 | 0.7603 |
0.5612 | 27.0 | 6534 | 0.8435 | 0.7521 |
0.5612 | 28.0 | 6776 | 0.9000 | 0.7355 |
0.5358 | 29.0 | 7018 | 0.9241 | 0.7603 |
0.5358 | 30.0 | 7260 | 0.9005 | 0.7479 |
0.5434 | 31.0 | 7502 | 0.8875 | 0.7645 |
0.5434 | 32.0 | 7744 | 0.8878 | 0.7686 |
0.5434 | 33.0 | 7986 | 0.9162 | 0.7645 |
0.5066 | 34.0 | 8228 | 0.8665 | 0.7686 |
0.5066 | 35.0 | 8470 | 0.8756 | 0.7686 |
0.5276 | 36.0 | 8712 | 0.9723 | 0.7603 |
0.5276 | 37.0 | 8954 | 1.0044 | 0.7521 |
0.4916 | 38.0 | 9196 | 0.9647 | 0.7521 |
0.4916 | 39.0 | 9438 | 0.9819 | 0.7603 |
0.4865 | 40.0 | 9680 | 0.9644 | 0.7686 |
0.4865 | 41.0 | 9922 | 0.9084 | 0.7851 |
0.4505 | 42.0 | 10164 | 1.0152 | 0.7521 |
0.4505 | 43.0 | 10406 | 0.9332 | 0.7769 |
0.4798 | 44.0 | 10648 | 0.9803 | 0.7603 |
0.4798 | 45.0 | 10890 | 1.0211 | 0.7521 |
0.4234 | 46.0 | 11132 | 0.9143 | 0.7810 |
0.4234 | 47.0 | 11374 | 0.9969 | 0.7645 |
0.4269 | 48.0 | 11616 | 0.9515 | 0.7851 |
0.4269 | 49.0 | 11858 | 0.9998 | 0.7686 |
0.4135 | 50.0 | 12100 | 0.9641 | 0.7727 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.0+cu117
- Datasets 2.19.0
- Tokenizers 0.13.3
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.