metadata
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: a photo of bakso
widget:
- text: A photo of bakso in a bowl
output:
url: image_0.png
- text: A photo of bakso in a bowl
output:
url: image_1.png
- text: A photo of bakso in a bowl
output:
url: image_2.png
- text: A photo of bakso in a bowl
output:
url: image_3.png
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
SDXL LoRA DreamBooth - adhisetiawan/sdxl-base-1.0-indonesian-food-dreambooth-lora
Model description
These are adhisetiawan/sdxl-base-1.0-indonesian-food-dreambooth-lora LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using DreamBooth.
LoRA for the text encoder was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Trigger words
You should use a photo of bakso to trigger the image generation.
Download model
Weights for this model are available in Safetensors format.
Download them in the Files & versions tab.
Intended uses & limitations
How to use
import torch
from diffusers import DiffusionPipeline
# Load Stable Diffusion XL Base1.0
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
).to("cuda")
# Optional CPU offloading to save some GPU Memory
pipeline.enable_model_cpu_offload()
# Loading Trained DreamBooth LoRA Weights
pipeline.load_lora_weights("adhisetiawan/sdxl-base-1.0-indonesian-food-dreambooth-lora")
images = pipeline(
"a delicous takoyaki in a plate", num_images_per_prompt=4, guidance_scale=8
)
for i in range(len(images.images)):
display(images.images[i])
Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
Training details
[TODO: describe the data used to train the model]