metadata
base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
datasets: []
language:
- ca
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4173
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Queixa: Deixar constància de la vostra disconformitat per un mal servei
(un tracte inapropiat, un temps d'espera excessiu, etc.), sense demanar
cap indemnització.
sentences:
- >-
Quin és el format de sortida del tràmit de baixa de la llicència de
gual?
- Quin és el tipus de venda que es realitza en els mercats setmanals?
- Quin és el paper de la queixa en la resolució de conflictes?
- source_sentence: >-
L'empleat que en l'exercici de les seves tasques tingui assignada la
funció de conducció de vehicles municipals, pot sol·licitar un ajut per
les despeses ocasionades per a la renovació del carnet de conduir
(certificat mèdic i administratiu).
sentences:
- Quin és el resultat esperat de les escoles que reben les subvencions?
- Quin és el requisit per obtenir una autorització d'estacionament?
- Quin és el requisit per a sol·licitar l'ajut social?
- source_sentence: >-
Aportació de documentació. Subvencions per finançar despeses d'hipoteca,
subministrament i altres serveis i la manca d'ingressos de lloguer de les
entitats culturals
sentences:
- Quin és el propòsit de la documentació?
- Quin és el paper del públic assistent en el Ple Municipal?
- >-
Quin és el paper de l'ajuntament en la renovació del carnet de persona
cuidadora?
- source_sentence: >-
la Fira de la Vila del Llibre de Sitges consistent en un conjunt de
parades instal·lades al Passeig Marítim
sentences:
- >-
Quin és el paper de la llicència de parcel·lació en la construcció
d'edificacions?
- >-
Quin és l'objectiu del tràmit de participació en processos de selecció
de personal de l'Ajuntament?
- >-
Quin és el lloc on es desenvolupa la Fira de la Vila del Llibre de
Sitges?
- source_sentence: >-
Mitjançant aquest tràmit la persona interessada posa en coneixement de
l'Ajuntament de Sitges l'inici d'un espectacle públic o activitat
recreativa de caràcter extraordinari...
sentences:
- >-
Quin és el paper de la persona interessada en la llicència per a
espectacles públics o activitats recreatives de caràcter extraordinari?
- >-
Quin és el paper del Registre de Sol·licitants d'Habitatge amb Protecció
Oficial en la gestió d'habitatges?
- >-
Quin és el tipus de familiars que es tenen en compte per l'ajut
especial?
model-index:
- name: BGE SITGES CAT
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.07327586206896551
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.15732758620689655
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.21767241379310345
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.39439655172413796
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.07327586206896551
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.05244252873563218
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.043534482758620686
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03943965517241379
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07327586206896551
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.15732758620689655
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.21767241379310345
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.39439655172413796
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.20125893142070614
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.14385604816639316
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.17098930660026063
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.07327586206896551
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.15086206896551724
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.21767241379310345
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.39439655172413796
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.07327586206896551
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.050287356321839075
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04353448275862069
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03943965517241379
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07327586206896551
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.15086206896551724
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.21767241379310345
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.39439655172413796
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2016207682773376
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.14438799945265474
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1715919733142084
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.07327586206896551
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.14870689655172414
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.21120689655172414
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.40086206896551724
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.07327586206896551
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.04956896551724138
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04224137931034483
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04008620689655173
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07327586206896551
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.14870689655172414
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.21120689655172414
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.40086206896551724
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2021149795452301
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1433856732348113
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.16973847535400444
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.06896551724137931
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.14655172413793102
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.21767241379310345
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.38146551724137934
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.06896551724137931
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.048850574712643674
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04353448275862069
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03814655172413793
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.06896551724137931
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.14655172413793102
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.21767241379310345
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.38146551724137934
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.19535554125135882
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1398416119321293
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.16597320243564267
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.05603448275862069
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.13793103448275862
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.1939655172413793
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.36853448275862066
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.05603448275862069
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.04597701149425287
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.03879310344827586
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03685344827586207
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.05603448275862069
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.13793103448275862
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.1939655172413793
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.36853448275862066
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18225870966588442
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.12688492063492074
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.15425908300208627
name: Cosine Map@100
BGE SITGES CAT
This is a sentence-transformers model finetuned from projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("adriansanz/SITGES-aina4")
sentences = [
"Mitjançant aquest tràmit la persona interessada posa en coneixement de l'Ajuntament de Sitges l'inici d'un espectacle públic o activitat recreativa de caràcter extraordinari...",
'Quin és el paper de la persona interessada en la llicència per a espectacles públics o activitats recreatives de caràcter extraordinari?',
"Quin és el paper del Registre de Sol·licitants d'Habitatge amb Protecció Oficial en la gestió d'habitatges?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0733 |
cosine_accuracy@3 |
0.1573 |
cosine_accuracy@5 |
0.2177 |
cosine_accuracy@10 |
0.3944 |
cosine_precision@1 |
0.0733 |
cosine_precision@3 |
0.0524 |
cosine_precision@5 |
0.0435 |
cosine_precision@10 |
0.0394 |
cosine_recall@1 |
0.0733 |
cosine_recall@3 |
0.1573 |
cosine_recall@5 |
0.2177 |
cosine_recall@10 |
0.3944 |
cosine_ndcg@10 |
0.2013 |
cosine_mrr@10 |
0.1439 |
cosine_map@100 |
0.171 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0733 |
cosine_accuracy@3 |
0.1509 |
cosine_accuracy@5 |
0.2177 |
cosine_accuracy@10 |
0.3944 |
cosine_precision@1 |
0.0733 |
cosine_precision@3 |
0.0503 |
cosine_precision@5 |
0.0435 |
cosine_precision@10 |
0.0394 |
cosine_recall@1 |
0.0733 |
cosine_recall@3 |
0.1509 |
cosine_recall@5 |
0.2177 |
cosine_recall@10 |
0.3944 |
cosine_ndcg@10 |
0.2016 |
cosine_mrr@10 |
0.1444 |
cosine_map@100 |
0.1716 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0733 |
cosine_accuracy@3 |
0.1487 |
cosine_accuracy@5 |
0.2112 |
cosine_accuracy@10 |
0.4009 |
cosine_precision@1 |
0.0733 |
cosine_precision@3 |
0.0496 |
cosine_precision@5 |
0.0422 |
cosine_precision@10 |
0.0401 |
cosine_recall@1 |
0.0733 |
cosine_recall@3 |
0.1487 |
cosine_recall@5 |
0.2112 |
cosine_recall@10 |
0.4009 |
cosine_ndcg@10 |
0.2021 |
cosine_mrr@10 |
0.1434 |
cosine_map@100 |
0.1697 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.069 |
cosine_accuracy@3 |
0.1466 |
cosine_accuracy@5 |
0.2177 |
cosine_accuracy@10 |
0.3815 |
cosine_precision@1 |
0.069 |
cosine_precision@3 |
0.0489 |
cosine_precision@5 |
0.0435 |
cosine_precision@10 |
0.0381 |
cosine_recall@1 |
0.069 |
cosine_recall@3 |
0.1466 |
cosine_recall@5 |
0.2177 |
cosine_recall@10 |
0.3815 |
cosine_ndcg@10 |
0.1954 |
cosine_mrr@10 |
0.1398 |
cosine_map@100 |
0.166 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.056 |
cosine_accuracy@3 |
0.1379 |
cosine_accuracy@5 |
0.194 |
cosine_accuracy@10 |
0.3685 |
cosine_precision@1 |
0.056 |
cosine_precision@3 |
0.046 |
cosine_precision@5 |
0.0388 |
cosine_precision@10 |
0.0369 |
cosine_recall@1 |
0.056 |
cosine_recall@3 |
0.1379 |
cosine_recall@5 |
0.194 |
cosine_recall@10 |
0.3685 |
cosine_ndcg@10 |
0.1823 |
cosine_mrr@10 |
0.1269 |
cosine_map@100 |
0.1543 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 6
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 6
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.3065 |
5 |
3.3947 |
- |
- |
- |
- |
- |
- |
0.6130 |
10 |
2.6401 |
- |
- |
- |
- |
- |
- |
0.9195 |
15 |
2.0152 |
- |
- |
- |
- |
- |
- |
0.9808 |
16 |
- |
1.3404 |
0.1639 |
0.1577 |
0.1694 |
0.1503 |
0.1638 |
1.2261 |
20 |
1.4542 |
- |
- |
- |
- |
- |
- |
1.5326 |
25 |
1.0135 |
- |
- |
- |
- |
- |
- |
1.8391 |
30 |
0.8437 |
- |
- |
- |
- |
- |
- |
1.9617 |
32 |
- |
0.9436 |
0.1556 |
0.1596 |
0.1600 |
0.1467 |
0.1701 |
2.1456 |
35 |
0.7676 |
- |
- |
- |
- |
- |
- |
2.4521 |
40 |
0.5126 |
- |
- |
- |
- |
- |
- |
2.7586 |
45 |
0.4358 |
- |
- |
- |
- |
- |
- |
2.9425 |
48 |
- |
0.7852 |
0.1650 |
0.1693 |
0.1720 |
0.1511 |
0.1686 |
3.0651 |
50 |
0.4192 |
- |
- |
- |
- |
- |
- |
3.3716 |
55 |
0.3429 |
- |
- |
- |
- |
- |
- |
3.6782 |
60 |
0.3025 |
- |
- |
- |
- |
- |
- |
3.9847 |
65 |
0.2863 |
0.7401 |
0.1646 |
0.1706 |
0.1759 |
0.1480 |
0.1694 |
4.2912 |
70 |
0.2474 |
- |
- |
- |
- |
- |
- |
4.5977 |
75 |
0.2324 |
- |
- |
- |
- |
- |
- |
4.9042 |
80 |
0.2344 |
- |
- |
- |
- |
- |
- |
4.9655 |
81 |
- |
0.7217 |
0.1663 |
0.1699 |
0.1767 |
0.1512 |
0.1696 |
5.2107 |
85 |
0.2181 |
- |
- |
- |
- |
- |
- |
5.5172 |
90 |
0.2116 |
- |
- |
- |
- |
- |
- |
5.8238 |
95 |
0.1926 |
- |
- |
- |
- |
- |
- |
5.8851 |
96 |
- |
0.7154 |
0.166 |
0.1697 |
0.1716 |
0.1543 |
0.171 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}