|
--- |
|
license: apache-2.0 |
|
base_model: projecte-aina/roberta-base-ca-v2-cawikitc |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: p1 |
|
results: [] |
|
pipeline_tag: zero-shot-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# p1 |
|
|
|
This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cawikitc](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cawikitc) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8254 |
|
- Accuracy: 0.5 |
|
- Precision: 0.25 |
|
- Recall: 0.5 |
|
- F1: 0.3333 |
|
- Ratio: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 2 |
|
- seed: 47 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.06 |
|
- lr_scheduler_warmup_steps: 4 |
|
- num_epochs: 2 |
|
- label_smoothing_factor: 0.1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| |
|
| 0.8263 | 0.38 | 10 | 0.8199 | 0.5 | 0.5 | 0.5 | 0.3473 | 0.0163 | |
|
| 0.8283 | 0.75 | 20 | 0.8389 | 0.5 | 0.25 | 0.5 | 0.3333 | 1.0 | |
|
| 0.8167 | 1.13 | 30 | 0.8325 | 0.5 | 0.25 | 0.5 | 0.3333 | 1.0 | |
|
| 0.8183 | 1.51 | 40 | 0.8228 | 0.4973 | 0.2493 | 0.4973 | 0.3321 | 0.9973 | |
|
| 0.8178 | 1.89 | 50 | 0.8254 | 0.5 | 0.25 | 0.5 | 0.3333 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.15.2 |