Edit model card

GeneZC/MiniChat-3B-GGUF

Quantized GGUF model files for MiniChat-3B from GeneZC

Name Quant method Size
minichat-3b.q2_k.gguf q2_k 1.30 GB
minichat-3b.q3_k_m.gguf q3_k_m 1.51 GB
minichat-3b.q4_k_m.gguf q4_k_m 1.85 GB
minichat-3b.q5_k_m.gguf q5_k_m 2.15 GB
minichat-3b.q6_k.gguf q6_k 2.48 GB
minichat-3b.q8_0.gguf q8_0 3.21 GB

Original Model Card:

MiniChat-3B

πŸ“‘ arXiv | πŸ€— HuggingFace-MiniMA | πŸ€— HuggingFace-MiniChat | πŸ€– ModelScope-MiniMA | πŸ€– ModelScope-MiniChat

❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.

A language model distilled and finetuned from an adapted version of LLaMA2-7B following "Towards the Law of Capacity Gap in Distilling Language Models".

Outperforming a wide range of 3B competitors in GPT4 evaluation and even competing with several 7B chat models.

teaser_b

The following is an example code snippet to use MiniChat-3B:

import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

from conversation import get_default_conv_template

# MiniChat
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-3B", use_fast=False)
# GPU.
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
# CPU.
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()

conv = get_default_conv_template("minichat")

question = "Implement a program to find the common elements in two arrays without using any extra data structures."
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
    torch.as_tensor(input_ids).cuda(),
    do_sample=True,
    temperature=0.7,
    max_new_tokens=1024,
)
output_ids = output_ids[0][len(input_ids[0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# output: "def common_elements(arr1, arr2):\n    if len(arr1) == 0:\n        return []\n    if len(arr2) == 0:\n        return arr1\n\n    common_elements = []\n    for element in arr1:\n        if element in arr2:\n            common_elements.append(element)\n\n    return common_elements"
# Multiturn conversation could be realized by continuously appending questions to `conv`.

Bibtex

@article{zhang2023law,
    title={Towards the Law of Capacity Gap in Distilling Language Models},
    author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
    year={2023},
    url={}
}
Downloads last month
80
GGUF
Model size
3.02B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for afrideva/MiniChat-3B-GGUF

Base model

GeneZC/MiniChat-3B
Quantized
(4)
this model

Space using afrideva/MiniChat-3B-GGUF 1