|
--- |
|
license: mit |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
datasets: |
|
- generator |
|
base_model: microsoft/phi-2 |
|
model-index: |
|
- name: phi2_fine_tune_istanbul_rugs |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# phi2_fine_tune_istanbul_rugs |
|
|
|
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8105 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0008 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- training_steps: 300 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.6408 | 0.72 | 10 | 0.5720 | |
|
| 0.4116 | 1.45 | 20 | 0.5234 | |
|
| 0.3467 | 2.17 | 30 | 0.5068 | |
|
| 0.328 | 2.9 | 40 | 0.4990 | |
|
| 0.3013 | 3.62 | 50 | 0.5022 | |
|
| 0.267 | 4.34 | 60 | 0.5051 | |
|
| 0.2407 | 5.07 | 70 | 0.5151 | |
|
| 0.2084 | 5.79 | 80 | 0.5329 | |
|
| 0.1821 | 6.52 | 90 | 0.5566 | |
|
| 0.1635 | 7.24 | 100 | 0.5996 | |
|
| 0.1431 | 7.96 | 110 | 0.6137 | |
|
| 0.1164 | 8.69 | 120 | 0.6461 | |
|
| 0.1045 | 9.41 | 130 | 0.6714 | |
|
| 0.0903 | 10.14 | 140 | 0.6719 | |
|
| 0.0773 | 10.86 | 150 | 0.6802 | |
|
| 0.0653 | 11.58 | 160 | 0.7234 | |
|
| 0.0595 | 12.31 | 170 | 0.7497 | |
|
| 0.0523 | 13.03 | 180 | 0.7281 | |
|
| 0.0453 | 13.76 | 190 | 0.7439 | |
|
| 0.0405 | 14.48 | 200 | 0.7655 | |
|
| 0.0363 | 15.2 | 210 | 0.7674 | |
|
| 0.0323 | 15.93 | 220 | 0.7835 | |
|
| 0.0293 | 16.65 | 230 | 0.7924 | |
|
| 0.0276 | 17.38 | 240 | 0.7981 | |
|
| 0.0257 | 18.1 | 250 | 0.8023 | |
|
| 0.0252 | 18.82 | 260 | 0.8019 | |
|
| 0.0236 | 19.55 | 270 | 0.8040 | |
|
| 0.023 | 20.27 | 280 | 0.8089 | |
|
| 0.0232 | 21.0 | 290 | 0.8104 | |
|
| 0.0231 | 21.72 | 300 | 0.8105 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.9.0 |
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |