|
--- |
|
language: en |
|
library_name: torch |
|
license: mit |
|
tags: |
|
- table-2 |
|
--- |
|
|
|
# Model Card for ahalev/mcuu-table-2-kk4vaif1 |
|
|
|
This model corresponds to run(s) in Table 2, specifically that with the hyperparameters: |
|
|
|
**1)** {'scenario': 5, 'forecast_horizon': 6, 'intrinsic_reward_weight': 0.0001, 'bound_reward_weight': 'cosine', 'noise_std': 0.01} |
|
**2)** {'scenario': 5, 'forecast_horizon': 12, 'intrinsic_reward_weight': 0.0001, 'bound_reward_weight': 'cosine', 'noise_std': 0.01} |
|
**3)** {'scenario': 5, 'forecast_horizon': 24, 'intrinsic_reward_weight': 0.0001, 'bound_reward_weight': 'cosine', 'noise_std': 0.01} |
|
|
|
## Usage |
|
```python |
|
from trainer import Trainer |
|
trainer = Trainer.from_pretrained('ahalev/mcuu-table-2-kk4vaif1') |
|
algo, env = trainer.algo, trainer.env |
|
|
|
# Get an action from a random observation |
|
action, _ = algo.policy.get_action(env.observation_space.sample()) |
|
|
|
# Evaluate the policy over 2920 timesteps |
|
evaluation = trainer.evaluate() |
|
``` |
|
|
|
For more information, see the [repo](https://github.com/ahalev/Microgrid-Control-Under-Uncertainty) |
|
and the [paper](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4866653). |
|
|
|
This model was created by [@ahalev](https://hf.co/ahalev). |