ahishamm's picture
End of training
06b813a verified
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - ahishamm/whisperQURANIC
metrics:
  - wer
model-index:
  - name: QURANIC Whisper Large V3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: whisperQURANIC
          type: ahishamm/whisperQURANIC
          args: 'config: ar, split: train'
        metrics:
          - name: Wer
            type: wer
            value: 268.8141178069162

QURANIC Whisper Large V3

This model is a fine-tuned version of openai/whisper-large-v3 on the whisperQURANIC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0238
  • Wer: 268.8141

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1467 0.4 200 0.1302 42.9071
0.1226 0.8 400 0.0958 156.6683
0.0746 1.2 600 0.0772 494.4510
0.0868 1.6 800 0.0678 252.8552
0.0801 2.0 1000 0.0560 361.0673
0.0552 2.4 1200 0.0473 153.8658
0.053 2.8 1400 0.0399 310.5204
0.0421 3.2 1600 0.0308 305.3961
0.0291 3.6 1800 0.0266 242.5182
0.0303 4.0 2000 0.0238 268.8141

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.0
  • Datasets 2.18.0
  • Tokenizers 0.15.1