ArzEn-LLM
Collection
Models trained on AraZn Dataset
โข
16 items
โข
Updated
โข
8
Just install peft
, transformers
and pytorch
first.
pip install peft transformers torch
Then login with your huggingface token to get access to base models
huggingface-cli login --token <YOUR_HF_TOKEN>
Then load the model.
from peft import PeftConfig, PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ahmedheakl/arazn-gemma1.1-7B-eng-extra"
peft_config = PeftConfig.from_pretrained(peft_model_id)
base_model_name = peft_config.base_model_name_or_path
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
model = PeftModel.from_pretrained(base_model, peft_model_id)
model = model.to("cuda")
tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
Then do inference
import torch
raw_prompt = """<bos><start_of_turn>user
Translate the following code-switched Arabic-English-mixed text to English only.
{source}<end_of_turn>
<start_of_turn>model
"""
def inference(prompt) -> str:
prompt = raw_prompt.format(source=prompt)
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(
**inputs,
use_cache=True,
num_return_sequences=1,
max_new_tokens=100,
do_sample=True,
num_beams=1,
temperature=0.7,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
outputs = tokenizer.batch_decode(generated_ids)[0]
torch.cuda.empty_cache()
torch.cuda.synchronize()
return outputs.split("<start_of_turn>model\n")[-1].split("<end_of_turn>")[0]
print(inference("ุฃูุง ุฃุญุจ ุงูbanana")) # I like bananas.
Please see paper & code for more information:
BibTeX:
@article{heakl2024arzen,
title={ArzEn-LLM: Code-Switched Egyptian Arabic-English Translation and Speech Recognition Using LLMs},
author={Heakl, Ahmed and Zaghloul, Youssef and Ali, Mennatullah and Hossam, Rania and Gomaa, Walid},
journal={arXiv preprint arXiv:2406.18120},
year={2024}
}