ESGify / README.md
Alexeym12's picture
Update README.md
c9f6532
|
raw
history blame
5.07 kB
metadata
license: apache-2.0
tags:
  - ESG

Main information

We introduce the model for multilabel ESG risks classification. There is 47 classes methodology with granularial risk definition.

Usage

from collections import OrderedDict
from transformers import MPNetPreTrainedModel, MPNetModel, AutoTokenizer
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
        token_embeddings = model_output #First element of model_output contains all token embeddings
        input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

# Definition of ESGify class because of custom,sentence-transformers like, mean pooling function and classifier head
class ESGify(MPNetPreTrainedModel):
    """Model for Classification ESG risks from text."""

    def __init__(self,config): #tuning only the head
        """
        """
        super().__init__(config)
        # Instantiate Parts of model
        self.mpnet = MPNetModel(config,add_pooling_layer=False)
        self.id2label =  config.id2label
        self.label2id =  config.label2id
        self.classifier = torch.nn.Sequential(OrderedDict([('norm',torch.nn.BatchNorm1d(768)),
                                                ('linear',torch.nn.Linear(768,512)),
                                                ('act',torch.nn.ReLU()),
                                                ('batch_n',torch.nn.BatchNorm1d(512)),
                                                ('drop_class', torch.nn.Dropout(0.2)),
                                                ('class_l',torch.nn.Linear(512 ,47))]))


    def forward(self, input_ids, attention_mask):


         # Feed input to mpnet model
        outputs = self.mpnet(input_ids=input_ids,
                             attention_mask=attention_mask)
         
        # mean pooling dataset and eed input to classifier to compute logits
        logits = self.classifier( mean_pooling(outputs['last_hidden_state'],attention_mask))
         
        # apply sigmoid
        logits  = 1.0 / (1.0 + torch.exp(-logits))
        return logits

model = ESGify.from_pretrained('ai-lab/ESGify')
tokenizer = AutoTokenizer.from_pretrained('ai-lab/ESGify')
texts = ['text1','text2']
to_model = tokenizer.batch_encode_plus(
                  texts,
                  add_special_tokens=True,
                  max_length=512,
                  return_token_type_ids=False,
                  padding="max_length",
                  truncation=True,
                  return_attention_mask=True,
                  return_tensors='pt',
                )
results = model(**to_model)


# We also recommend preprocess texts with using FLAIR model

from flair.data import Sentence
from flair.nn import Classifier
from torch.utils.data import DataLoader
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize

stop_words = set(stopwords.words('english'))
tagger = Classifier.load('ner-ontonotes-large')
tag_list = ['FAC','LOC','ORG','PERSON']
texts_with_masks = []
for example_sent in texts:

    word_tokens = word_tokenize(example_sent)
    # converts the words in word_tokens to lower case and then checks whether 
    #they are present in stop_words or not
    for w in word_tokens:
        if w.lower() not in stop_words:
            filtered_sentence.append(w)
    # make a sentence
    sentence = Sentence(' '.join(filtered_sentence))
    # run NER over sentence
    tagger.predict(sentence)
    sent = ' '.join(filtered_sentence)
    k = 0
    new_string = ''
    start_t = 0 
    for i in sentence.get_labels():
        info = i.to_dict()
        val = info['value']
        if info['confidence']>0.8 and val in tag_list : 

            if i.data_point.start_position>start_t :
                new_string+=sent[start_t:i.data_point.start_position]
            start_t = i.data_point.end_position
            new_string+= f'<{val}>'
    new_string+=sent[start_t:-1]
    texts_with_masks.append(new_string)

to_model = tokenizer.batch_encode_plus(
                  texts_with_masks,
                  add_special_tokens=True,
                  max_length=512,
                  return_token_type_ids=False,
                  padding="max_length",
                  truncation=True,
                  return_attention_mask=True,
                  return_tensors='pt',
                )
results = model(**to_model)

Background

The project aims to develop the ESG Risks classification model with a custom ESG risks definition methodology.

Training procedure

Pre-training

We use the pretrained microsoft/mpnet-base model. Next, we do the domain-adaptation procedure by Mask Language Modeling pertaining with using texts of ESG reports.

Training data

We use the ESG news dataset of 2000 texts with manually annotation of ESG specialists.