File size: 5,034 Bytes
6b27e19 508601d 6b27e19 ffa3695 6b27e19 ed723ba 6b27e19 d4bce0e ed723ba d4bce0e ed723ba 99815a4 ed723ba 99815a4 ed723ba d4bce0e ed723ba d4bce0e ed723ba 5867b86 ed723ba d4bce0e ed723ba 5867b86 ed723ba 6b27e19 d4bce0e 6b27e19 d4bce0e ffa3695 d4bce0e 6b27e19 d4bce0e 6b27e19 d4bce0e 6b27e19 d4bce0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
---
tags:
- question-generation
- multilingual
- nlp
- indicnlp
datasets:
- ai4bharat/IndicQuestionGeneration
- squad
language:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
licenses:
- cc-by-nc-4.0
---
# MultiIndicQuestionGenerationSS
MultiIndicQuestionGenerationSS is a multilingual, sequence-to-sequence pre-trained model, a [IndicBARTSS](https://huggingface.co/ai4bharat/IndicBARTSS) checkpoint fine-tuned on the 11 languages of [IndicQuestionGeneration](https://huggingface.co/datasets/ai4bharat/IndicQuestionGeneration) dataset. For fine-tuning details,
see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicQuestionGenerationSS to build question generation applications for Indian languages by fine-tuning the model with supervised training data for the question generation task. Some salient features of the MultiIndicQuestionGenerationSS are:
<ul>
<li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li>
<li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for finetuning and decoding. </li>
<li> Fine-tuned on large Indic language corpora (770 K examples). </li>
<li> Unlike ai4bharat/MultiIndicQuestionGenerationUnified, each language is written in its own script, so you do not need to perform any script mapping to/from Devanagari. </li>
</ul>
You can read more about MultiIndicQuestionGenerationSS in this <a href="https://arxiv.org/abs/2203.05437">paper</a>.
## Using this model in `transformers`
```
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
from transformers import AlbertTokenizer, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)
# Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS")
# Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicQuestionGenerationSS")
# Some initial mapping
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
# To get lang_id use any of ['<2as>', '<2bn>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
# First tokenize the input and outputs. The format below is how IndicBARTSS was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
inp = tokenizer("7 फरवरी, 2016 [SEP] खेल 7 फरवरी, 2016 को कैलिफोर्निया के सांता क्लारा में सैन फ्रांसिस्को खाड़ी क्षेत्र में लेवी स्टेडियम में खेला गया था। </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
out = tokenizer("<2hi> सुपर बाउल किस दिन खेला गया? </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
# For loss
model_outputs.loss ## This is not label smoothed.
# For logits
model_outputs.logits
# For generation. Pardon the messiness. Note the decoder_start_token_id.
model.eval() # Set dropouts to zero
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>"))
# Decode to get output strings
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(decoded_output) # कब होगा पहला एएफएल गेम?
```
## Benchmarks
Scores on the `IndicQuestionGeneration` test sets are as follows:
Language | RougeL
---------|----------------------------
as | 20.73
bn | 30.38
gu | 28.13
hi | 34.42
kn | 23.77
ml | 22.24
mr | 23.62
or | 27.53
pa | 32.53
ta | 23.49
te | 25.81
## Citation
If you use this model, please cite the following paper:
```
@inproceedings{Kumar2022IndicNLGSM,
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
year={2022},
url = "https://arxiv.org/abs/2203.05437"
}
```
# License
The model is available under the MIT License. |