aisuko's picture
Add phi3-medium
228e4d3
|
raw
history blame
6.32 kB
metadata
license: mit

Original repo: https://huggingface.co/microsoft/Phi-3-medium-128k-instruct

Note: Make sure you have enough CPUs resources, otherwise it will load failed.

ec2-user@ip-10-110-145-52:~/workspace/llama.cpp$ ./llama-cli -m ../Phi-3-medium-128k-instruct/phi3-medium-128k-instruct-Q4_K_M-v2.gguf -n 128 --repeat_penalty 1.0 --co
lor -i -r "User:" -f prompts/chat-with-bob.txt
Log start
main: build = 3233 (a8d49d86)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: seed  = 1719626314
llama_model_loader: loaded meta data with 27 key-value pairs and 245 tensors from ../Phi-3-medium-128k-instruct/phi3-medium-128k-instruct-Q4_K_M-v2.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = phi3
llama_model_loader: - kv   1:                               general.name str              = Phi3
llama_model_loader: - kv   2:                        phi3.context_length u32              = 131072
llama_model_loader: - kv   3:  phi3.rope.scaling.original_context_length u32              = 4096
llama_model_loader: - kv   4:                      phi3.embedding_length u32              = 5120
llama_model_loader: - kv   5:                   phi3.feed_forward_length u32              = 17920
llama_model_loader: - kv   6:                           phi3.block_count u32              = 40
llama_model_loader: - kv   7:                  phi3.attention.head_count u32              = 40
llama_model_loader: - kv   8:               phi3.attention.head_count_kv u32              = 10
llama_model_loader: - kv   9:      phi3.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                  phi3.rope.dimension_count u32              = 128
llama_model_loader: - kv  11:                        phi3.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  12:                          general.file_type u32              = 15
llama_model_loader: - kv  13:              phi3.rope.scaling.attn_factor f32              = 1.190238
llama_model_loader: - kv  14:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  15:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  16:                      tokenizer.ggml.tokens arr[str,32064]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  17:                      tokenizer.ggml.scores arr[f32,32064]   = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv  18:                  tokenizer.ggml.token_type arr[i32,32064]   = [3, 3, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  19:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  20:                tokenizer.ggml.eos_token_id u32              = 32000
llama_model_loader: - kv  21:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  22:            tokenizer.ggml.padding_token_id u32              = 32000
llama_model_loader: - kv  23:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  24:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  25:                    tokenizer.chat_template str              = {% for message in messages %}{% if (m...
llama_model_loader: - kv  26:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   83 tensors
llama_model_loader: - type q4_K:  101 tensors
llama_model_loader: - type q5_K:   40 tensors
llama_model_loader: - type q6_K:   21 tensors
llm_load_vocab: special tokens cache size = 323
llm_load_vocab: token to piece cache size = 0.1687 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = phi3
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32064
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 131072
llm_load_print_meta: n_embd           = 5120
llm_load_print_meta: n_head           = 40
llm_load_print_meta: n_head_kv        = 10
llm_load_print_meta: n_layer          = 40
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1280
llm_load_print_meta: n_embd_v_gqa     = 1280
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 17920
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 2
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 4096
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 14B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 13.96 B
llm_load_print_meta: model size       = 7.98 GiB (4.91 BPW) 
llm_load_print_meta: general.name     = Phi3
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 32000 '<|endoftext|>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 32000 '<|endoftext|>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_print_meta: EOT token        = 32007 '<|end|>'
llm_load_print_meta: max token length = 48
llm_load_tensors: ggml ctx size =    0.13 MiB
llm_load_tensors:        CPU buffer size =  8169.25 MiB