|
--- |
|
language: tr |
|
license: other |
|
library_name: peft |
|
datasets: |
|
- atasoglu/databricks-dolly-15k-tr |
|
pipeline_tag: text-generation |
|
base_model: meta-llama/Llama-2-7b-hf |
|
--- |
|
## Training procedure |
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
### Framework versions |
|
|
|
- PEFT 0.4.0 |
|
|
|
# How to use: |
|
``` |
|
!pip install transformers peft accelerate bitsandbytes trl safetensors |
|
|
|
from huggingface_hub import notebook_login |
|
notebook_login() |
|
|
|
import torch |
|
from peft import AutoPeftModelForCausalLM, get_peft_config, PeftModel, PeftConfig, get_peft_model, LoraConfig, TaskType |
|
from transformers import AutoTokenizer |
|
|
|
peft_model_id = "akdeniz27/llama-2-7b-hf-qlora-dolly15k-turkish" |
|
config = PeftConfig.from_pretrained(peft_model_id) |
|
# load base LLM model and tokenizer |
|
model = AutoPeftModelForCausalLM.from_pretrained( |
|
peft_model_id, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=torch.float16, |
|
load_in_4bit=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
|
|
prompt = "..." |
|
|
|
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda() |
|
|
|
outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True, top_p=0.9,temperature=0.9) |
|
|
|
``` |