akera's picture
Upload processor
f9b9b07 verified
|
raw
history blame
2.72 kB
metadata
base_model: openai/whisper-medium
datasets:
  - generator
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: whisper-medium-sb-lug-eng-v2
    results: []

whisper-medium-sb-lug-eng-v2

This model is a fine-tuned version of openai/whisper-medium on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1255
  • Wer Lug: 0.124
  • Wer Eng: 0.171
  • Wer Mean: 0.147
  • Cer Lug: 0.028
  • Cer Eng: 0.164
  • Cer Mean: 0.096

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Lug Wer Eng Wer Mean Cer Lug Cer Eng Cer Mean
0.7222 0.1 500 0.2662 0.391 0.146 0.268 0.085 0.104 0.095
0.5452 0.2 1000 0.1894 0.223 0.058 0.141 0.05 0.034 0.042
0.4172 0.3 1500 0.1764 0.199 0.276 0.238 0.043 0.269 0.156
0.3949 0.4 2000 0.1583 0.177 0.035 0.106 0.039 0.017 0.028
0.3626 0.5 2500 0.1508 0.153 0.157 0.155 0.035 0.122 0.078
0.3467 0.6 3000 0.1397 0.14 0.258 0.199 0.033 0.213 0.123
0.3443 0.7 3500 0.1333 0.139 0.044 0.092 0.032 0.027 0.029
0.3169 0.8 4000 0.1297 0.129 0.027 0.078 0.029 0.011 0.02
0.3276 0.9 4500 0.1264 0.124 0.086 0.105 0.028 0.058 0.043
0.317 1.0 5000 0.1255 0.124 0.171 0.147 0.028 0.164 0.096

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.2.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1