SetFit with akhooli/sbert_ar_nli_500k_norm
This is a SetFit model that can be used for Text Classification. This SetFit model uses akhooli/sbert_ar_nli_500k_norm as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. It was trained on akhooli/ar_reviews_100k_3 dataset (4500 samples, as few shot) with 68.7% accuracy. There are 3 labels in the dataset: 0: negative, 1:positive, 2:mixed/neutral. Normalize the text before classifying as the model uses normalized text. Here's how to use the model:
pip install setfit
from setfit import SetFitModel
from unicodedata import normalize
# Download model from Hub
model = SetFitModel.from_pretrained("akhooli/setfit_ar_100k_reviews")
# Run inference
queries = [
"يغلي الماء عند 100 درجة مئوية",
"فعلا لقد أحببت ذلك الفيلم",
"🤮 اﻷناناس مع البيتزا؟ إنه غير محبذ",
"رأيت أناسا بائسين في الطريق",
"لم يعجبني المطعم رغم أن السعر مقبول",
"من باب جبر الخاطر هذه 3 نجوم لتقييم الخدمة",
"من باب جبر الخواطر، هذه نجمة واحدة لخدمة ﻻ تستحق"
]
queries_n = [normalize('NFKC', query) for query in queries]
preds = model.predict(queries_n)
print(preds)
# if you want to see the probabilities for each label
probas = model.predict_proba(queries_n)
print(probas)
The rest of this model card is auto generated.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: akhooli/sbert_ar_nli_500k_norm
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Negative |
|
Mixed |
|
Positive |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.6874 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("akhooli/setfit_ar_100k_reviews")
# Run inference
preds = model("المرأة الخارقة")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 53.0251 | 1598 |
Label | Training Sample Count |
---|---|
Negative | 1500 |
Positive | 1500 |
Mixed | 1500 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: 5000
- sampling_strategy: undersampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- run_name: setfit_reviews_7.5k
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.3397 | - |
0.04 | 100 | 0.2846 | - |
0.08 | 200 | 0.2523 | - |
0.12 | 300 | 0.2248 | - |
0.16 | 400 | 0.2089 | - |
0.2 | 500 | 0.1947 | - |
0.24 | 600 | 0.182 | - |
0.28 | 700 | 0.1614 | - |
0.32 | 800 | 0.1493 | - |
0.36 | 900 | 0.139 | - |
0.4 | 1000 | 0.1128 | - |
0.44 | 1100 | 0.1056 | - |
0.48 | 1200 | 0.0896 | - |
0.52 | 1300 | 0.0748 | - |
0.56 | 1400 | 0.0616 | - |
0.6 | 1500 | 0.0585 | - |
0.64 | 1600 | 0.048 | - |
0.68 | 1700 | 0.0422 | - |
0.72 | 1800 | 0.0371 | - |
0.76 | 1900 | 0.0306 | - |
0.8 | 2000 | 0.028 | - |
0.84 | 2100 | 0.0236 | - |
0.88 | 2200 | 0.0211 | - |
0.92 | 2300 | 0.0173 | - |
0.96 | 2400 | 0.0175 | - |
1.0 | 2500 | 0.0158 | - |
1.04 | 2600 | 0.0153 | - |
1.08 | 2700 | 0.0195 | - |
1.12 | 2800 | 0.0141 | - |
1.16 | 2900 | 0.0113 | - |
1.2 | 3000 | 0.0084 | - |
1.24 | 3100 | 0.0073 | - |
1.28 | 3200 | 0.0073 | - |
1.32 | 3300 | 0.007 | - |
1.3600 | 3400 | 0.0075 | - |
1.4 | 3500 | 0.0068 | - |
1.44 | 3600 | 0.0038 | - |
1.48 | 3700 | 0.0028 | - |
1.52 | 3800 | 0.0031 | - |
1.56 | 3900 | 0.0056 | - |
1.6 | 4000 | 0.0059 | - |
1.6400 | 4100 | 0.0022 | - |
1.6800 | 4200 | 0.0052 | - |
1.72 | 4300 | 0.004 | - |
1.76 | 4400 | 0.004 | - |
1.8 | 4500 | 0.0047 | - |
1.8400 | 4600 | 0.0027 | - |
1.88 | 4700 | 0.0036 | - |
1.92 | 4800 | 0.0039 | - |
1.96 | 4900 | 0.004 | - |
2.0 | 5000 | 0.0048 | - |
Framework Versions
- Python: 3.10.14
- SetFit: 1.2.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for akhooli/setfit_ar_100k_reviews
Base model
aubmindlab/bert-base-arabertv02
Finetuned
akhooli/sbert_ar_nli_500k_norm