Edit model card

SentenceTransformer based on jinaai/jina-embeddings-v2-base-de

This is a sentence-transformers model finetuned from jinaai/jina-embeddings-v2-base-de. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: jinaai/jina-embeddings-v2-base-de
  • Maximum Sequence Length: 1024 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: JinaBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("akot/jina-semantic-bmf-matryoshka")
# Run inference
sentences = [
    '67 Abwandlung des Beispiels 1 in Rn. 66: A erhält zudem zwei Kinderzulagen für seine in den Jahren 2004 und 2005 geborenen Kinder. Beitragspflichtige Einnahmen 53.000 € 4 % 2.120 € höchstens 2.100 € anzusetzen 2.100 € abzüglich Zulage 175 € Mindesteigenbeitrag (§ 86 Abs. 1 Satz 2 EStG) 1.925 € Sockelbetrag (§ 86 Abs. 1 Satz 4 EStG) 60 € maßgebend (§ 86 Abs. 1 Satz 5 EStG) 1.925 € Die von A geleisteten Beiträge übersteigen den Mindesteigenbeitrag. Die Zulage wird nicht gekürzt.',
    'Wird die Zulage für A gekürzt, wenn die Beiträge den Mindesteigenbeitrag übersteigen?',
    'Wie erfolgt die Besteuerung bei der ausgleichsberechtigten Person nach einer externen Teilung?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.02
cosine_accuracy@3 0.2269
cosine_accuracy@5 0.3702
cosine_accuracy@10 0.6116
cosine_precision@1 0.02
cosine_precision@3 0.0756
cosine_precision@5 0.074
cosine_precision@10 0.0612
cosine_recall@1 0.02
cosine_recall@3 0.2269
cosine_recall@5 0.3702
cosine_recall@10 0.6116
cosine_ndcg@10 0.2844
cosine_mrr@10 0.1841
cosine_map@100 0.2005

Information Retrieval

Metric Value
cosine_accuracy@1 0.02
cosine_accuracy@3 0.2214
cosine_accuracy@5 0.3648
cosine_accuracy@10 0.6062
cosine_precision@1 0.02
cosine_precision@3 0.0738
cosine_precision@5 0.073
cosine_precision@10 0.0606
cosine_recall@1 0.02
cosine_recall@3 0.2214
cosine_recall@5 0.3648
cosine_recall@10 0.6062
cosine_ndcg@10 0.2808
cosine_mrr@10 0.1812
cosine_map@100 0.1978

Information Retrieval

Metric Value
cosine_accuracy@1 0.02
cosine_accuracy@3 0.2015
cosine_accuracy@5 0.3539
cosine_accuracy@10 0.5971
cosine_precision@1 0.02
cosine_precision@3 0.0672
cosine_precision@5 0.0708
cosine_precision@10 0.0597
cosine_recall@1 0.02
cosine_recall@3 0.2015
cosine_recall@5 0.3539
cosine_recall@10 0.5971
cosine_ndcg@10 0.2731
cosine_mrr@10 0.1743
cosine_map@100 0.1908

Information Retrieval

Metric Value
cosine_accuracy@1 0.029
cosine_accuracy@3 0.2069
cosine_accuracy@5 0.3485
cosine_accuracy@10 0.588
cosine_precision@1 0.029
cosine_precision@3 0.069
cosine_precision@5 0.0697
cosine_precision@10 0.0588
cosine_recall@1 0.029
cosine_recall@3 0.2069
cosine_recall@5 0.3485
cosine_recall@10 0.588
cosine_ndcg@10 0.274
cosine_mrr@10 0.1783
cosine_map@100 0.1944

Information Retrieval

Metric Value
cosine_accuracy@1 0.0091
cosine_accuracy@3 0.1815
cosine_accuracy@5 0.3339
cosine_accuracy@10 0.5662
cosine_precision@1 0.0091
cosine_precision@3 0.0605
cosine_precision@5 0.0668
cosine_precision@10 0.0566
cosine_recall@1 0.0091
cosine_recall@3 0.1815
cosine_recall@5 0.3339
cosine_recall@10 0.5662
cosine_ndcg@10 0.2526
cosine_mrr@10 0.1567
cosine_map@100 0.1719

Training Details

Training Dataset

Unnamed Dataset

  • Size: 4,957 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 5 tokens
    • mean: 145.09 tokens
    • max: 1024 tokens
    • min: 9 tokens
    • mean: 19.57 tokens
    • max: 41 tokens
  • Samples:
    positive anchor
    134 Eine Rückzahlungsverpflichtung besteht nicht für den Teil der Zulagen, der auf nach § 1 Abs. 1 Nr. 2 AltZertG angespartes gefördertes Altersvorsorgevermögen entfällt, wenn es in Form einer Hinterbliebenenrente an die dort genannten Hinterbliebenen ausgezahlt wird. Dies gilt auch für den entsprechenden Teil der Steuerermäßigung. Muss man Zulagen zurückzahlen, wenn das Altersvorsorgevermögen als Hinterbliebenenrente ausgezahlt wird?
    140 Beendet der Zulageberechtigte vor der vollständigen Rückzahlung des AltersvorsorgeEigenheimbetrags die Nutzung zu eigenen Wohnzwecken, wird er so behandelt, als habe er den noch nicht zurückgezahlten Betrag schädlich verwendet. Die auf den noch ausstehenden Rückzahlungsbetrag entfallenden Zulagen sowie die nach § 10a Abs. 4 EStG gesondert festgestellten Steuerermäßigungen sind zurückzuzahlen (§ 92a Abs. 3 EStG). Die im noch ausstehenden Rückzahlungsbetrag enthaltenen Zuwächse (z.B. Zinserträge und Kursgewinne) Seite 41 sind als sonstige Einkünfte zu versteuern (§ 22 Nr. 5 Satz 5 Halbsatz 1 EStG). Außerdem hat der Zulageberechtigte den Vorteil zu versteuern, der sich aus der zinslosen Nutzung des noch nicht zurückgezahlten Betrags ergibt. Zugrunde gelegt wird hierbei eine Verzinsung von 5 % (Zins und Zinseszins) für jedes volle Kalenderjahr der Nutzung (§ 22 Nr. 5 Satz 5 Halbsatz 2 EStG). Diese Folgen treten nicht ein, wenn er den noch nicht zurückgezahlten Betrag in ein Folgeobjekt investiert (§ 92a Abs. 4 Satz 3 Nr. 1 EStG) oder zugunsten eines auf seinen Namen lautenden zertifizierten Altersvorsorgevertrags einzahlt (§ 92a Abs. 4 Satz 3 Nr. 2 EStG). Was geschieht steuerlich, wenn der AltersvorsorgeEigenheimbetrag nicht vollständig zurückgezahlt wird und die Immobilie nicht mehr selbst genutzt wird?
    144 Die als Einkünfte nach § 22 Nr. 5 Satz 3 EStG i.V.m. § 22 Nr. 5 Satz 2 EStG zu besteuernden Beträge muss der Anbieter gem. § 94 Abs. 1 Satz 4 EStG dem Zulageberechtigten bescheinigen und im Wege des Rentenbezugsmitteilungsverfahrens (§ 22a EStG) mitteilen. Ergeben sich insoweit steuerpflichtige Einkünfte nach § 22 Nr. 5 Satz 3 EStG für einen anderen Leistungsempfänger (z. B. Erben), ist für diesen eine entsprechende Rentenbezugsmitteilung der ZfA zu übermitteln. Was muss im Falle eines anderen Leistungsempfängers, wie Erben, hinsichtlich der Rentenbezugsmitteilung getan werden?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.5161 10 2.8284 - - - - -
0.9806 19 - 0.1775 0.1840 0.1873 0.1571 0.1916
1.0323 20 2.1 - - - - -
1.5484 30 1.3699 - - - - -
1.9613 38 - 0.1950 0.1904 0.1899 0.1732 0.1919
2.0645 40 1.0988 - - - - -
2.5806 50 0.8621 - - - - -
2.9935 58 - 0.1935 0.1893 0.1912 0.1701 0.1919
3.0968 60 0.7657 - - - - -
3.6129 70 0.61 - - - - -
3.9742 77 - 0.1856 0.1936 0.1931 0.1803 0.1986
4.1290 80 0.5908 - - - - -
4.6452 90 0.5263 - - - - -
4.9548 96 - 0.1981 0.2 0.2043 0.188 0.2188
5.1613 100 0.4526 - - - - -
5.6774 110 0.4439 - - - - -
5.9871 116 - 0.1952 0.1961 0.2006 0.1855 0.2015
6.1935 120 0.3765 - - - - -
6.7097 130 0.3824 - - - - -
6.9677 135 - 0.1921 0.1922 0.1992 0.1885 0.2036
7.2258 140 0.3594 - - - - -
7.7419 150 0.38 - - - - -
8.0 155 - 0.1994 0.1999 0.2068 0.1830 0.2145
8.2581 160 0.3487 - - - - -
8.7742 170 0.3343 - - - - -
8.9806 174 - 0.1939 0.2003 0.2031 0.1791 0.2091
9.2903 180 0.3425 - - - - -
9.8065 190 0.3459 0.1944 0.1908 0.1978 0.1719 0.2005
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.4
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
15
Safetensors
Model size
161M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for akot/jina-semantic-bmf-matryoshka

Finetuned
(2)
this model

Evaluation results