Edit model card

Yolo11n Sea Urchin Detector

Model Details / Overview

This model was trained to detect sea urchins using the YOLO11 architecture. Trained on open datasets to identify and locate urchins in various underwater conditions.

Yolo11n Test Results (50 epochs)

results

Evaluation of YOLOv11n & YOLOv11m Performance (100 epochs)

results

Model Weights

The model's weights can be found here | Also available in various formats:

Intended Use

  • Real-time detections on underwater footage
  • Post-processed video/imagery for detecting sea urchins in underwater environments

Factors

Model Performance

  • Multi-source Dataset: Trained on datasets that include urchin images from various angles.
  • Model Architecture (YOLO11n): Lightweight and optimized for real-time urchin detection in underwater footage.
  • Training Data: The dataset is split into 70% training, 20% validation, and 10% test data.
  • Training Parameters: Configured with 50 epochs, a 0.001 learning rate, and 640x640 image size for convergence.

Datasets

The training data was collected, parsed and organized from open sources:

  1. Orange-OpenSource Marine-Detect
  2. Roboflow - Sakana Urchins CJLib

Dataset Composition:

  • Training Images: 1169
  • Validation Images: 334
  • Test Images: 168
  • Train/Val/Test Split Ratio: 7:2:1

Metrics

Below are the key metrics from the model evaluation on the validation set:

Training Validation Results

Training and Validation Losses

Training and Validation Losses

Confusion Matrix

Confusion Matrix

Precision-Recall Curve

Precision-Recall Curve

F1 Score Curve

F1 Score Curve

Training Configuration

  • Model Weights File: yolo11n_urchin_trained.pt
  • Number of Epochs: 50
  • Learning Rate: 0.001
  • Batch Size: 32
  • Image Size: 640x640

Deployment

How to Use the Model

To use the trained model, follow these steps:

  1. Load the Model:
    from ultralytics import YOLO
    
    # Load the model
    model = YOLO("yolo11n_urchin_trained.pt")
    

Limitations

The model was trained on a mix of open source images. It may not generalize well to other environments or non-marine scenarios. Additionally, environmental variations, occlusions, or poor lighting may affect performance.

Additional Notes:

Dataset Sources:

  • Two datasets were combined to improve model robustness, allowing the model to adapt to varying lighting and water conditions. Ethical Considerations:
  • The detection results should be validated before using them for critical applications. The model’s performance in new environments might vary, and it may have biases if certain types of sea urchins were underrepresented in the training datasets.
Downloads last month
105
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for akridge/yolo11n-sea-urchin-detector

Base model

Ultralytics/YOLO11
Quantized
(2)
this model