File size: 1,917 Bytes
1e03122 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
- wer
model-index:
- name: bert-finetuned-ner-tokenizer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner-tokenizer
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0280
- Precision: 0.7896
- Recall: 0.8536
- F1: 0.8203
- Accuracy: 0.9919
- Wer: 0.0079
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:|
| 0.0515 | 1.0 | 768 | 0.0273 | 0.7510 | 0.8495 | 0.7972 | 0.9907 | 0.0089 |
| 0.0192 | 2.0 | 1536 | 0.0259 | 0.7567 | 0.8627 | 0.8062 | 0.9911 | 0.0086 |
| 0.0158 | 3.0 | 2304 | 0.0259 | 0.7828 | 0.8565 | 0.8180 | 0.9916 | 0.0082 |
| 0.0111 | 4.0 | 3072 | 0.0280 | 0.7896 | 0.8536 | 0.8203 | 0.9919 | 0.0079 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|