|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/nllb-200-distilled-600M |
|
tags: |
|
- translation |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: nllb-200-distilled-600M-mt-finetuned-zindi-dyu-to-fr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nllb-200-distilled-600M-mt-finetuned-zindi-dyu-to-fr |
|
|
|
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2584 |
|
- Bleu: 6.4075 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 3.1707 | 0.1575 | 20 | 2.7356 | 4.8084 | |
|
| 2.9074 | 0.3150 | 40 | 2.5883 | 5.0141 | |
|
| 2.7168 | 0.4724 | 60 | 2.4902 | 5.5785 | |
|
| 2.6912 | 0.6299 | 80 | 2.4154 | 5.7743 | |
|
| 2.6062 | 0.7874 | 100 | 2.3742 | 6.0010 | |
|
| 2.5794 | 0.9449 | 120 | 2.3480 | 6.1354 | |
|
| 2.4634 | 1.1024 | 140 | 2.3314 | 5.9899 | |
|
| 2.5055 | 1.2598 | 160 | 2.3167 | 6.1080 | |
|
| 2.5062 | 1.4173 | 180 | 2.3032 | 6.3784 | |
|
| 2.4771 | 1.5748 | 200 | 2.2944 | 6.4510 | |
|
| 2.4284 | 1.7323 | 220 | 2.2854 | 6.2883 | |
|
| 2.4423 | 1.8898 | 240 | 2.2783 | 6.5036 | |
|
| 2.3202 | 2.0472 | 260 | 2.2730 | 6.4039 | |
|
| 2.3855 | 2.2047 | 280 | 2.2701 | 6.2921 | |
|
| 2.4292 | 2.3622 | 300 | 2.2658 | 6.3025 | |
|
| 2.3678 | 2.5197 | 320 | 2.2626 | 6.2881 | |
|
| 2.4158 | 2.6772 | 340 | 2.2600 | 6.3684 | |
|
| 2.351 | 2.8346 | 360 | 2.2588 | 6.2852 | |
|
| 2.3755 | 2.9921 | 380 | 2.2584 | 6.2819 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.1 |
|
|