alefiury's picture
Librarian Bot: Add base_model information to model (#6)
86366c6
|
raw
history blame
6.72 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - librispeech_asr
metrics:
  - f1
base_model: facebook/wav2vec2-xls-r-300m
model-index:
  - name: weights
    results: []

wav2vec2-large-xlsr-53-gender-recognition-librispeech

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on Librispeech-clean-100 for gender recognition. It achieves the following results on the evaluation set:

  • Loss: 0.0061
  • F1: 0.9993

Compute your inferences

import os
from typing import List, Optional, Union, Dict

import tqdm
import torch
import torchaudio
import numpy as np
import pandas as pd
from torch import nn
from torch.utils.data import DataLoader
from torch.nn import functional as F
from transformers import (
    AutoFeatureExtractor,
    AutoModelForAudioClassification,
    Wav2Vec2Processor
)


class CustomDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        dataset: List,
        basedir: Optional[str] = None,
        sampling_rate: int = 16000,
        max_audio_len: int = 5,
    ):
        self.dataset = dataset
        self.basedir = basedir

        self.sampling_rate = sampling_rate
        self.max_audio_len = max_audio_len

    def __len__(self):
        """
        Return the length of the dataset
        """
        return len(self.dataset)

    def _cutorpad(self, audio: np.ndarray) -> np.ndarray:
        """
        Cut or pad audio to the wished length
        """
        effective_length = self.sampling_rate * self.max_audio_len
        len_audio = len(audio)

        # If audio length is bigger than wished audio length
        if len_audio > effective_length:
            audio = audio[:effective_length]

        # Expand one dimension related to the channel dimension
        return audio


    def __getitem__(self, index) -> torch.Tensor:
        """
        Return the audio and the sampling rate
        """
        if self.basedir is None:
            filepath = self.dataset[index]
        else:
            filepath = os.path.join(self.basedir, self.dataset[index])

        speech_array, sr = torchaudio.load(filepath)

        # Transform to mono
        if speech_array.shape[0] > 1:
            speech_array = torch.mean(speech_array, dim=0, keepdim=True)

        if sr != self.sampling_rate:
            transform = torchaudio.transforms.Resample(sr, self.sampling_rate)
            speech_array = transform(speech_array)
            sr = self.sampling_rate

        speech_array = speech_array.squeeze().numpy()

        # Cut or pad audio
        speech_array = self._cutorpad(speech_array)

        return speech_array

class CollateFunc:
    def __init__(
        self,
        processor: Wav2Vec2Processor,
        max_length: Optional[int] = None,
        padding: Union[bool, str] = True,
        pad_to_multiple_of: Optional[int] = None,
        sampling_rate: int = 16000,
    ):
        self.padding = padding
        self.processor = processor
        self.max_length = max_length
        self.sampling_rate = sampling_rate
        self.pad_to_multiple_of = pad_to_multiple_of

    def __call__(self, batch: List):
        input_features = []

        for audio in batch:
            input_tensor = self.processor(audio, sampling_rate=self.sampling_rate).input_values
            input_tensor = np.squeeze(input_tensor)
            input_features.append({"input_values": input_tensor})

        batch = self.processor.pad(
            input_features,
            padding=self.padding,
            max_length=self.max_length,
            pad_to_multiple_of=self.pad_to_multiple_of,
            return_tensors="pt",
        )

        return batch


def predict(test_dataloader, model, device: torch.device):
    """
    Predict the class of the audio
    """
    model.to(device)
    model.eval()
    preds = []

    with torch.no_grad():
        for batch in tqdm.tqdm(test_dataloader):
            input_values, attention_mask = batch['input_values'].to(device), batch['attention_mask'].to(device)

            logits = model(input_values, attention_mask=attention_mask).logits
            scores = F.softmax(logits, dim=-1)

            pred = torch.argmax(scores, dim=1).cpu().detach().numpy()

            preds.extend(pred)

    return preds


def get_gender(model_name_or_path: str, audio_paths: List[str], label2id: Dict, id2label: Dict, device: torch.device):
    num_labels = 2

    feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path)
    model = AutoModelForAudioClassification.from_pretrained(
        pretrained_model_name_or_path=model_name_or_path,
        num_labels=num_labels,
        label2id=label2id,
        id2label=id2label,
    )

    test_dataset = CustomDataset(audio_paths)
    data_collator = CollateFunc(
        processor=feature_extractor,
        padding=True,
        sampling_rate=16000,
    )

    test_dataloader = DataLoader(
        dataset=test_dataset,
        batch_size=16,
        collate_fn=data_collator,
        shuffle=False,
        num_workers=10
    )

    preds = predict(test_dataloader=test_dataloader, model=model, device=device)

    return preds


model_name_or_path = "alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech"
audio_paths = [] # Must be a list with absolute paths of the audios that will be used in inference
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

label2id = {
    "female": 0,
    "male": 1
}

id2label = {
    0: "female",
    1: "male"
}

num_labels = 2

preds = get_gender(model_name_or_path, audio_paths, label2id, id2label, device)

Training and evaluation data

The Librispeech-clean-100 dataset was used to train the model, with 70% of the data used for training, 10% for validation, and 20% for testing.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1
0.002 1.0 1248 0.0061 0.9993

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.0+cu118
  • Tokenizers 0.13.3