alex-miller's picture
End of training
bb8a31f verified
|
raw
history blame
2.38 kB
metadata
license: apache-2.0
base_model: alex-miller/ODABert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: cva-quant-weighted-classifier
    results: []

cva-quant-weighted-classifier

This model is a fine-tuned version of alex-miller/ODABert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5278
  • Accuracy: 0.8214
  • F1: 0.8148
  • Precision: 0.7857
  • Recall: 0.8462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6851 1.0 7 0.6688 0.5 0.5882 0.4762 0.7692
0.6626 2.0 14 0.6466 0.6786 0.7097 0.6111 0.8462
0.6353 3.0 21 0.6255 0.75 0.7586 0.6875 0.8462
0.6157 4.0 28 0.6029 0.7857 0.7857 0.7333 0.8462
0.5949 5.0 35 0.5822 0.8214 0.8148 0.7857 0.8462
0.5808 6.0 42 0.5638 0.8214 0.8148 0.7857 0.8462
0.5585 7.0 49 0.5493 0.8214 0.8148 0.7857 0.8462
0.5464 8.0 56 0.5376 0.8214 0.8148 0.7857 0.8462
0.5326 9.0 63 0.5304 0.8214 0.8148 0.7857 0.8462
0.5236 10.0 70 0.5278 0.8214 0.8148 0.7857 0.8462

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1