metadata
license: apache-2.0
base_model: alex-miller/ODABert
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: cva-quant-weighted-classifier
results: []
cva-quant-weighted-classifier
This model is a fine-tuned version of alex-miller/ODABert on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2017
- Accuracy: 0.9643
- F1: 0.9630
- Precision: 0.9286
- Recall: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.6608 | 1.0 | 7 | 0.5726 | 0.7857 | 0.7857 | 0.7333 | 0.8462 |
0.5107 | 2.0 | 14 | 0.4116 | 0.8571 | 0.8462 | 0.8462 | 0.8462 |
0.35 | 3.0 | 21 | 0.3056 | 0.8929 | 0.8800 | 0.9167 | 0.8462 |
0.2166 | 4.0 | 28 | 0.2485 | 0.8571 | 0.8462 | 0.8462 | 0.8462 |
0.1356 | 5.0 | 35 | 0.1940 | 0.9286 | 0.9231 | 0.9231 | 0.9231 |
0.0705 | 6.0 | 42 | 0.1848 | 0.9286 | 0.9231 | 0.9231 | 0.9231 |
0.0491 | 7.0 | 49 | 0.1728 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
0.0229 | 8.0 | 56 | 0.1725 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
0.0129 | 9.0 | 63 | 0.1744 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
0.0092 | 10.0 | 70 | 0.1793 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
0.0075 | 11.0 | 77 | 0.1847 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
0.0061 | 12.0 | 84 | 0.1890 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
0.0058 | 13.0 | 91 | 0.1928 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
0.0049 | 14.0 | 98 | 0.1954 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
0.0045 | 15.0 | 105 | 0.1975 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
0.0042 | 16.0 | 112 | 0.1990 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
0.004 | 17.0 | 119 | 0.2001 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
0.0038 | 18.0 | 126 | 0.2010 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
0.0038 | 19.0 | 133 | 0.2015 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
0.0038 | 20.0 | 140 | 0.2017 | 0.9643 | 0.9630 | 0.9286 | 1.0 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1