Lafontaine GPT Model
This is a language model based on La Fontaine's fables. It uses a transformer-based architecture to generate text inspired by La Fontaine's style.
Using the Model with Gradio
To interact with the model, you can use the following Gradio script:
import gradio as gr
import torch
# Assuming 'BigramLanguageModel' and 'decode' are defined as in your model code
class GradioInterface:
def __init__(self, model_path="lafontaine_gpt_v1.pth"):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model = self.load_model(model_path)
self.model.eval()
def load_model(self, model_path):
model = BigramLanguageModel().to(self.device)
model.load_state_dict(torch.load(model_path, map_location=self.device))
return model
def generate_text(self, input_text, max_tokens=100):
context = torch.tensor([encode(input_text)], dtype=torch.long, device=self.device)
output = self.model.generate(context, max_new_tokens=max_tokens)
return decode(output[0].tolist())
# Load the model
model_interface = GradioInterface()
# Define Gradio interface
gr_interface = gr.Interface(
fn=model_interface.generate_text,
inputs=["text", gr.Slider(50, 500)],
outputs="text",
description="Bigram Language Model text generation. Enter some text, and the model will continue it.",
examples=[["Once upon a time"]]
)
# Launch the interface
gr_interface.launch()
Model Details
- Architecture: Transformer-based bigram language model
- Dataset: La Fontaine's fables
How to Use
You can use this model in your own projects by loading the model weights and running it on your input text.
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.