phi3-mini-QLoRA
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5590
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9007 | 0.1810 | 100 | 0.6361 |
0.606 | 0.3619 | 200 | 0.5831 |
0.5789 | 0.5429 | 300 | 0.5755 |
0.5797 | 0.7238 | 400 | 0.5709 |
0.5653 | 0.9048 | 500 | 0.5687 |
0.573 | 1.0857 | 600 | 0.5663 |
0.5577 | 1.2667 | 700 | 0.5648 |
0.5586 | 1.4476 | 800 | 0.5636 |
0.572 | 1.6286 | 900 | 0.5623 |
0.5594 | 1.8095 | 1000 | 0.5616 |
0.5585 | 1.9905 | 1100 | 0.5614 |
0.5486 | 2.1715 | 1200 | 0.5609 |
0.5614 | 2.3524 | 1300 | 0.5599 |
0.5515 | 2.5334 | 1400 | 0.5597 |
0.5525 | 2.7143 | 1500 | 0.5593 |
0.5545 | 2.8953 | 1600 | 0.5590 |
Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.2.2
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 0
Model tree for alexrodpas/phi3-mini-QLoRA
Base model
microsoft/Phi-3-mini-4k-instruct