vilab_pullrequest
#3
by
jensinjames
- opened
- README.md +1 -44
- README_diffusers.md +0 -334
- feature_extractor/preprocessor_config.json +0 -27
- image_encoder/config.json +0 -23
- image_encoder/model.fp16.safetensors +0 -3
- image_encoder/model.safetensors +0 -3
- model_index.json +0 -33
- scheduler/scheduler_config.json +0 -19
- text_encoder/config.json +0 -25
- text_encoder/model.fp16.safetensors +0 -3
- text_encoder/model.safetensors +0 -3
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +0 -30
- tokenizer/tokenizer_config.json +0 -30
- tokenizer/vocab.json +0 -0
- unet/config.json +0 -31
- unet/diffusion_pytorch_model.fp16.safetensors +0 -3
- unet/diffusion_pytorch_model.safetensors +0 -3
- vae/config.json +0 -32
- vae/diffusion_pytorch_model.fp16.safetensors +0 -3
- vae/diffusion_pytorch_model.safetensors +0 -3
README.md
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
-
tags:
|
4 |
-
- image-to-video
|
5 |
-
pipeline_tag: text-to-video
|
6 |
---
|
7 |
# VGen
|
8 |
|
@@ -238,47 +235,7 @@ In preparation.
|
|
238 |
|
239 |
Our codebase essentially supports all the commonly used components in video generation. You can manage your experiments flexibly by adding corresponding registration classes, including `ENGINE, MODEL, DATASETS, EMBEDDER, AUTO_ENCODER, DISTRIBUTION, VISUAL, DIFFUSION, PRETRAIN`, and can be compatible with all our open-source algorithms according to your own needs. If you have any questions, feel free to give us your feedback at any time.
|
240 |
|
241 |
-
## Integration of I2VGenXL with 🧨 diffusers
|
242 |
|
243 |
-
I2VGenXL is supported in the 🧨 diffusers library. Here's how to use it:
|
244 |
-
|
245 |
-
```python
|
246 |
-
import torch
|
247 |
-
from diffusers import I2VGenXLPipeline
|
248 |
-
from diffusers.utils import load_image, export_to_gif
|
249 |
-
|
250 |
-
repo_id = "ali-vilab/i2vgen-xl"
|
251 |
-
pipeline = I2VGenXLPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
252 |
-
|
253 |
-
image_url = "https://github.com/ali-vilab/i2vgen-xl/blob/main/data/test_images/img_0009.png?download=true"
|
254 |
-
image = load_image(image_url).convert("RGB")
|
255 |
-
prompt = "Papers were floating in the air on a table in the library"
|
256 |
-
|
257 |
-
generator = torch.manual_seed(8888)
|
258 |
-
frames = pipeline(
|
259 |
-
prompt=prompt,
|
260 |
-
image=image,
|
261 |
-
generator=generator
|
262 |
-
).frames[0]
|
263 |
-
|
264 |
-
print(export_to_gif(frames))
|
265 |
-
```
|
266 |
-
|
267 |
-
Find the official documentation [here](https://huggingface.co/docs/diffusers/main/en/api/pipelines/i2vgenxl).
|
268 |
-
|
269 |
-
Sample output with I2VGenXL:
|
270 |
-
|
271 |
-
<table>
|
272 |
-
<tr>
|
273 |
-
<td><center>
|
274 |
-
masterpiece, bestquality, sunset.
|
275 |
-
<br>
|
276 |
-
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/i2vgen-xl-example.gif"
|
277 |
-
alt="library"
|
278 |
-
style="width: 300px;" />
|
279 |
-
</center></td>
|
280 |
-
</tr>
|
281 |
-
</table>
|
282 |
|
283 |
## BibTeX
|
284 |
|
@@ -326,4 +283,4 @@ If this repo is useful to you, please cite our corresponding technical paper.
|
|
326 |
|
327 |
## Disclaimer
|
328 |
|
329 |
-
This open-source model is trained with using [WebVid-10M](https://m-bain.github.io/webvid-dataset/) and [LAION-400M](https://laion.ai/blog/laion-400-open-dataset/) datasets and is intended for <strong>RESEARCH/NON-COMMERCIAL USE ONLY</strong>.
|
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
3 |
---
|
4 |
# VGen
|
5 |
|
|
|
235 |
|
236 |
Our codebase essentially supports all the commonly used components in video generation. You can manage your experiments flexibly by adding corresponding registration classes, including `ENGINE, MODEL, DATASETS, EMBEDDER, AUTO_ENCODER, DISTRIBUTION, VISUAL, DIFFUSION, PRETRAIN`, and can be compatible with all our open-source algorithms according to your own needs. If you have any questions, feel free to give us your feedback at any time.
|
237 |
|
|
|
238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
## BibTeX
|
241 |
|
|
|
283 |
|
284 |
## Disclaimer
|
285 |
|
286 |
+
This open-source model is trained with using [WebVid-10M](https://m-bain.github.io/webvid-dataset/) and [LAION-400M](https://laion.ai/blog/laion-400-open-dataset/) datasets and is intended for <strong>RESEARCH/NON-COMMERCIAL USE ONLY</strong>.
|
README_diffusers.md
DELETED
@@ -1,334 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
library_name: diffusers
|
4 |
-
tags:
|
5 |
-
- image-to-video
|
6 |
-
pipeline_tag: text-to-video
|
7 |
-
---
|
8 |
-
# VGen
|
9 |
-
|
10 |
-
|
11 |
-
![figure1](source/VGen.jpg "figure1")
|
12 |
-
|
13 |
-
VGen is an open-source video synthesis codebase developed by the Tongyi Lab of Alibaba Group, featuring state-of-the-art video generative models. This repository includes implementations of the following methods:
|
14 |
-
|
15 |
-
|
16 |
-
- [I2VGen-xl: High-quality image-to-video synthesis via cascaded diffusion models](https://i2vgen-xl.github.io/)
|
17 |
-
- [VideoComposer: Compositional Video Synthesis with Motion Controllability](https://videocomposer.github.io/)
|
18 |
-
- [Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation](https://higen-t2v.github.io/)
|
19 |
-
- [A Recipe for Scaling up Text-to-Video Generation with Text-free Videos]()
|
20 |
-
- [InstructVideo: Instructing Video Diffusion Models with Human Feedback]()
|
21 |
-
- [DreamVideo: Composing Your Dream Videos with Customized Subject and Motion](https://dreamvideo-t2v.github.io/)
|
22 |
-
- [VideoLCM: Video Latent Consistency Model](https://arxiv.org/abs/2312.09109)
|
23 |
-
- [Modelscope text-to-video technical report](https://arxiv.org/abs/2308.06571)
|
24 |
-
|
25 |
-
|
26 |
-
VGen can produce high-quality videos from the input text, images, desired motion, desired subjects, and even the feedback signals provided. It also offers a variety of commonly used video generation tools such as visualization, sampling, training, inference, join training using images and videos, acceleration, and more.
|
27 |
-
|
28 |
-
|
29 |
-
<a href='https://i2vgen-xl.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2311.04145'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/XUi0y7dxqEQ) <a href='https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441039979087.mp4'><img src='source/logo.png'></a>
|
30 |
-
|
31 |
-
|
32 |
-
## 🔥News!!!
|
33 |
-
- __[2024.01]__ Diffusers now supports I2VGenXL
|
34 |
-
- __[2023.12]__ We release the high-efficiency video generation method [VideoLCM](https://arxiv.org/abs/2312.09109)
|
35 |
-
- __[2023.12]__ We release the code and model of I2VGen-XL and the ModelScope T2V
|
36 |
-
- __[2023.12]__ We release the T2V method [HiGen](https://higen-t2v.github.io) and customizing T2V method [DreamVideo](https://dreamvideo-t2v.github.io).
|
37 |
-
- __[2023.12]__ We write an [introduction docment](doc/introduction.pdf) for VGen and compare I2VGen-XL with SVD.
|
38 |
-
- __[2023.11]__ We release a high-quality I2VGen-XL model, please refer to the [Webpage](https://i2vgen-xl.github.io)
|
39 |
-
|
40 |
-
|
41 |
-
## TODO
|
42 |
-
- [x] Release the technical papers and webpage of [I2VGen-XL](doc/i2vgen-xl.md)
|
43 |
-
- [x] Release the code and pretrained models that can generate 1280x720 videos
|
44 |
-
- [ ] Release models optimized specifically for the human body and faces
|
45 |
-
- [ ] Updated version can fully maintain the ID and capture large and accurate motions simultaneously
|
46 |
-
- [ ] Release other methods and the corresponding models
|
47 |
-
|
48 |
-
|
49 |
-
## Preparation
|
50 |
-
|
51 |
-
The main features of VGen are as follows:
|
52 |
-
- Expandability, allowing for easy management of your own experiments.
|
53 |
-
- Completeness, encompassing all common components for video generation.
|
54 |
-
- Excellent performance, featuring powerful pre-trained models in multiple tasks.
|
55 |
-
|
56 |
-
|
57 |
-
### Installation
|
58 |
-
|
59 |
-
```
|
60 |
-
conda create -n vgen python=3.8
|
61 |
-
conda activate vgen
|
62 |
-
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113
|
63 |
-
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
|
64 |
-
```
|
65 |
-
|
66 |
-
### Datasets
|
67 |
-
|
68 |
-
We have provided a **demo dataset** that includes images and videos, along with their lists in ``data``.
|
69 |
-
|
70 |
-
*Please note that the demo images used here are for testing purposes and were not included in the training.*
|
71 |
-
|
72 |
-
|
73 |
-
### Clone codeb
|
74 |
-
|
75 |
-
```
|
76 |
-
git clone https://github.com/damo-vilab/i2vgen-xl.git
|
77 |
-
cd i2vgen-xl
|
78 |
-
```
|
79 |
-
|
80 |
-
|
81 |
-
## Getting Started with VGen
|
82 |
-
|
83 |
-
### (1) Train your text-to-video model
|
84 |
-
|
85 |
-
|
86 |
-
Executing the following command to enable distributed training is as easy as that.
|
87 |
-
```
|
88 |
-
python train_net.py --cfg configs/t2v_train.yaml
|
89 |
-
```
|
90 |
-
|
91 |
-
In the `t2v_train.yaml` configuration file, you can specify the data, adjust the video-to-image ratio using `frame_lens`, and validate your ideas with different Diffusion settings, and so on.
|
92 |
-
|
93 |
-
- Before the training, you can download any of our open-source models for initialization. Our codebase supports custom initialization and `grad_scale` settings, all of which are included in the `Pretrain` item in yaml file.
|
94 |
-
- During the training, you can view the saved models and intermediate inference results in the `workspace/experiments/t2v_train`directory.
|
95 |
-
|
96 |
-
After the training is completed, you can perform inference on the model using the following command.
|
97 |
-
```
|
98 |
-
python inference.py --cfg configs/t2v_infer.yaml
|
99 |
-
```
|
100 |
-
Then you can find the videos you generated in the `workspace/experiments/test_img_01` directory. For specific configurations such as data, models, seed, etc., please refer to the `t2v_infer.yaml` file.
|
101 |
-
|
102 |
-
<!-- <table>
|
103 |
-
<center>
|
104 |
-
<tr>
|
105 |
-
<td ><center>
|
106 |
-
<video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441754174077.mp4"></video>
|
107 |
-
</center></td>
|
108 |
-
<td ><center>
|
109 |
-
<video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441138824052.mp4"></video>
|
110 |
-
</center></td>
|
111 |
-
</tr>
|
112 |
-
</center>
|
113 |
-
</table>
|
114 |
-
</center> -->
|
115 |
-
|
116 |
-
<table>
|
117 |
-
<center>
|
118 |
-
<tr>
|
119 |
-
<td ><center>
|
120 |
-
<image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01Ya2I5I25utrJwJ9Jf_!!6000000007587-2-tps-1280-720.png"></image>
|
121 |
-
</center></td>
|
122 |
-
<td ><center>
|
123 |
-
<image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01CrmYaz1zXBetmg3dd_!!6000000006723-2-tps-1280-720.png"></image>
|
124 |
-
</center></td>
|
125 |
-
</tr>
|
126 |
-
<tr>
|
127 |
-
<td ><center>
|
128 |
-
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441754174077.mp4">HRER</a> to view the generated video.</p>
|
129 |
-
</center></td>
|
130 |
-
<td ><center>
|
131 |
-
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441138824052.mp4">HRER</a> to view the generated video.</p>
|
132 |
-
</center></td>
|
133 |
-
</tr>
|
134 |
-
</center>
|
135 |
-
</table>
|
136 |
-
</center>
|
137 |
-
|
138 |
-
|
139 |
-
### (2) Run the I2VGen-XL model
|
140 |
-
|
141 |
-
(i) Download model and test data:
|
142 |
-
```
|
143 |
-
!pip install modelscope
|
144 |
-
from modelscope.hub.snapshot_download import snapshot_download
|
145 |
-
model_dir = snapshot_download('damo/I2VGen-XL', cache_dir='models/', revision='v1.0.0')
|
146 |
-
```
|
147 |
-
|
148 |
-
(ii) Run the following command:
|
149 |
-
```
|
150 |
-
python inference.py --cfg configs/i2vgen_xl_infer.yaml
|
151 |
-
```
|
152 |
-
In a few minutes, you can retrieve the high-definition video you wish to create from the `workspace/experiments/test_img_01` directory. At present, we find that the current model performs inadequately on **anime images** and **images with a black background** due to the lack of relevant training data. We are consistently working to optimize it.
|
153 |
-
|
154 |
-
|
155 |
-
<span style="color:red">Due to the compression of our video quality in GIF format, please click 'HRER' below to view the original video.</span>
|
156 |
-
|
157 |
-
<center>
|
158 |
-
<table>
|
159 |
-
<center>
|
160 |
-
<tr>
|
161 |
-
<td ><center>
|
162 |
-
<image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01CCEq7K1ZeLpNQqrWu_!!6000000003219-0-tps-1280-720.jpg"></image>
|
163 |
-
</center></td>
|
164 |
-
<td ><center>
|
165 |
-
<!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4"></video> -->
|
166 |
-
<image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01hIQcvG1spmQMLqBo0_!!6000000005816-1-tps-1280-704.gif"></image>
|
167 |
-
</center></td>
|
168 |
-
</tr>
|
169 |
-
<tr>
|
170 |
-
<td ><center>
|
171 |
-
<p>Input Image</p>
|
172 |
-
</center></td>
|
173 |
-
<td ><center>
|
174 |
-
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4">HRER</a> to view the generated video.</p>
|
175 |
-
</center></td>
|
176 |
-
</tr>
|
177 |
-
<tr>
|
178 |
-
<td ><center>
|
179 |
-
<image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01ZXY7UN23K8q4oQ3uG_!!6000000007236-2-tps-1280-720.png"></image>
|
180 |
-
</center></td>
|
181 |
-
<td ><center>
|
182 |
-
<!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4"></video> -->
|
183 |
-
<image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01iaSiiv1aJZURUEY53_!!6000000003309-1-tps-1280-704.gif"></image>
|
184 |
-
</center></td>
|
185 |
-
</tr>
|
186 |
-
<tr>
|
187 |
-
<td ><center>
|
188 |
-
<p>Input Image</p>
|
189 |
-
</center></td>
|
190 |
-
<td ><center>
|
191 |
-
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4">HRER</a> to view the generated video.</p>
|
192 |
-
</center></td>
|
193 |
-
</tr>
|
194 |
-
<tr>
|
195 |
-
<td ><center>
|
196 |
-
<image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01NHpVGl1oat4H54Hjf_!!6000000005242-2-tps-1280-720.png"></image>
|
197 |
-
</center></td>
|
198 |
-
<td ><center>
|
199 |
-
<!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4"></video> -->
|
200 |
-
<!-- <image muted="true" height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image>
|
201 |
-
-->
|
202 |
-
<image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image>
|
203 |
-
</center></td>
|
204 |
-
</tr>
|
205 |
-
<tr>
|
206 |
-
<td ><center>
|
207 |
-
<p>Input Image</p>
|
208 |
-
</center></td>
|
209 |
-
<td ><center>
|
210 |
-
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4">HERE</a> to view the generated video.</p>
|
211 |
-
</center></td>
|
212 |
-
</tr>
|
213 |
-
<tr>
|
214 |
-
<td ><center>
|
215 |
-
<image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01odS61s1WW9tXen21S_!!6000000002795-0-tps-1280-720.jpg"></image>
|
216 |
-
</center></td>
|
217 |
-
<td ><center>
|
218 |
-
<!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442163934688.mp4"></video> -->
|
219 |
-
<image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01Jyk1HT28JkZtpAtY6_!!6000000007912-1-tps-1280-704.gif"></image>
|
220 |
-
</center></td>
|
221 |
-
</tr>
|
222 |
-
<tr>
|
223 |
-
<td ><center>
|
224 |
-
<p>Input Image</p>
|
225 |
-
</center></td>
|
226 |
-
<td ><center>
|
227 |
-
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442163934688.mp4">HERE</a> to view the generated video.</p>
|
228 |
-
</center></td>
|
229 |
-
</tr>
|
230 |
-
</center>
|
231 |
-
</table>
|
232 |
-
</center>
|
233 |
-
|
234 |
-
### (3) Other methods
|
235 |
-
|
236 |
-
In preparation.
|
237 |
-
|
238 |
-
|
239 |
-
## Customize your own approach
|
240 |
-
|
241 |
-
Our codebase essentially supports all the commonly used components in video generation. You can manage your experiments flexibly by adding corresponding registration classes, including `ENGINE, MODEL, DATASETS, EMBEDDER, AUTO_ENCODER, DISTRIBUTION, VISUAL, DIFFUSION, PRETRAIN`, and can be compatible with all our open-source algorithms according to your own needs. If you have any questions, feel free to give us your feedback at any time.
|
242 |
-
|
243 |
-
## Integration of I2VGenXL with 🧨 diffusers
|
244 |
-
|
245 |
-
I2VGenXL is supported in the 🧨 diffusers library. Here's how to use it:
|
246 |
-
|
247 |
-
```python
|
248 |
-
import torch
|
249 |
-
from diffusers import I2VGenXLPipeline
|
250 |
-
from diffusers.utils import load_image, export_to_gif
|
251 |
-
|
252 |
-
repo_id = "ali-vilab/i2vgen-xl"
|
253 |
-
pipeline = I2VGenXLPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
254 |
-
|
255 |
-
image_url = "https://github.com/ali-vilab/i2vgen-xl/blob/main/data/test_images/img_0009.png?download=true"
|
256 |
-
image = load_image(image_url).convert("RGB")
|
257 |
-
prompt = "Papers were floating in the air on a table in the library"
|
258 |
-
|
259 |
-
generator = torch.manual_seed(8888)
|
260 |
-
frames = pipeline(
|
261 |
-
prompt=prompt,
|
262 |
-
image=image,
|
263 |
-
generator=generator
|
264 |
-
).frames[0]
|
265 |
-
|
266 |
-
print(export_to_gif(frames))
|
267 |
-
```
|
268 |
-
|
269 |
-
Find the official documentation [here](https://huggingface.co/docs/diffusers/main/en/api/pipelines/i2vgenxl).
|
270 |
-
|
271 |
-
Sample output with I2VGenXL:
|
272 |
-
|
273 |
-
<table>
|
274 |
-
<tr>
|
275 |
-
<td><center>
|
276 |
-
masterpiece, bestquality, sunset.
|
277 |
-
<br>
|
278 |
-
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/i2vgen-xl-example.gif"
|
279 |
-
alt="library"
|
280 |
-
style="width: 300px;" />
|
281 |
-
</center></td>
|
282 |
-
</tr>
|
283 |
-
</table>
|
284 |
-
|
285 |
-
## BibTeX
|
286 |
-
|
287 |
-
If this repo is useful to you, please cite our corresponding technical paper.
|
288 |
-
|
289 |
-
|
290 |
-
```bibtex
|
291 |
-
@article{2023i2vgenxl,
|
292 |
-
title={I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models},
|
293 |
-
author={Zhang, Shiwei and Wang, Jiayu and Zhang, Yingya and Zhao, Kang and Yuan, Hangjie and Qing, Zhiwu and Wang, Xiang and Zhao, Deli and Zhou, Jingren},
|
294 |
-
booktitle={arXiv preprint arXiv:2311.04145},
|
295 |
-
year={2023}
|
296 |
-
}
|
297 |
-
@article{2023videocomposer,
|
298 |
-
title={VideoComposer: Compositional Video Synthesis with Motion Controllability},
|
299 |
-
author={Wang, Xiang and Yuan, Hangjie and Zhang, Shiwei and Chen, Dayou and Wang, Jiuniu, and Zhang, Yingya, and Shen, Yujun, and Zhao, Deli and Zhou, Jingren},
|
300 |
-
booktitle={arXiv preprint arXiv:2306.02018},
|
301 |
-
year={2023}
|
302 |
-
}
|
303 |
-
@article{wang2023modelscope,
|
304 |
-
title={Modelscope text-to-video technical report},
|
305 |
-
author={Wang, Jiuniu and Yuan, Hangjie and Chen, Dayou and Zhang, Yingya and Wang, Xiang and Zhang, Shiwei},
|
306 |
-
journal={arXiv preprint arXiv:2308.06571},
|
307 |
-
year={2023}
|
308 |
-
}
|
309 |
-
@article{dreamvideo,
|
310 |
-
title={DreamVideo: Composing Your Dream Videos with Customized Subject and Motion},
|
311 |
-
author={Wei, Yujie and Zhang, Shiwei and Qing, Zhiwu and Yuan, Hangjie and Liu, Zhiheng and Liu, Yu and Zhang, Yingya and Zhou, Jingren and Shan, Hongming},
|
312 |
-
journal={arXiv preprint arXiv:2312.04433},
|
313 |
-
year={2023}
|
314 |
-
}
|
315 |
-
@article{qing2023higen,
|
316 |
-
title={Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation},
|
317 |
-
author={Qing, Zhiwu and Zhang, Shiwei and Wang, Jiayu and Wang, Xiang and Wei, Yujie and Zhang, Yingya and Gao, Changxin and Sang, Nong },
|
318 |
-
journal={arXiv preprint arXiv:2312.04483},
|
319 |
-
year={2023}
|
320 |
-
}
|
321 |
-
@article{wang2023videolcm,
|
322 |
-
title={VideoLCM: Video Latent Consistency Model},
|
323 |
-
author={Wang, Xiang and Zhang, Shiwei and Zhang, Han and Liu, Yu and Zhang, Yingya and Gao, Changxin and Sang, Nong },
|
324 |
-
journal={arXiv preprint arXiv:2312.09109},
|
325 |
-
year={2023}
|
326 |
-
}
|
327 |
-
```
|
328 |
-
|
329 |
-
## Disclaimer
|
330 |
-
|
331 |
-
This open-source model is trained with using [WebVid-10M](https://m-bain.github.io/webvid-dataset/) and [LAION-400M](https://laion.ai/blog/laion-400-open-dataset/) datasets and is intended for <strong>RESEARCH/NON-COMMERCIAL USE ONLY</strong>.
|
332 |
-
|
333 |
-
|
334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
feature_extractor/preprocessor_config.json
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"crop_size": {
|
3 |
-
"height": 224,
|
4 |
-
"width": 224
|
5 |
-
},
|
6 |
-
"do_center_crop": true,
|
7 |
-
"do_convert_rgb": true,
|
8 |
-
"do_normalize": true,
|
9 |
-
"do_rescale": true,
|
10 |
-
"do_resize": true,
|
11 |
-
"image_mean": [
|
12 |
-
0.48145466,
|
13 |
-
0.4578275,
|
14 |
-
0.40821073
|
15 |
-
],
|
16 |
-
"image_processor_type": "CLIPImageProcessor",
|
17 |
-
"image_std": [
|
18 |
-
0.26862954,
|
19 |
-
0.26130258,
|
20 |
-
0.27577711
|
21 |
-
],
|
22 |
-
"resample": 3,
|
23 |
-
"rescale_factor": 0.00392156862745098,
|
24 |
-
"size": {
|
25 |
-
"shortest_edge": 224
|
26 |
-
}
|
27 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image_encoder/config.json
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "i2vgen-xl/image_encoder",
|
3 |
-
"architectures": [
|
4 |
-
"CLIPVisionModelWithProjection"
|
5 |
-
],
|
6 |
-
"attention_dropout": 0.0,
|
7 |
-
"dropout": 0.0,
|
8 |
-
"hidden_act": "gelu",
|
9 |
-
"hidden_size": 1280,
|
10 |
-
"image_size": 224,
|
11 |
-
"initializer_factor": 1.0,
|
12 |
-
"initializer_range": 0.02,
|
13 |
-
"intermediate_size": 5120,
|
14 |
-
"layer_norm_eps": 1e-05,
|
15 |
-
"model_type": "clip_vision_model",
|
16 |
-
"num_attention_heads": 16,
|
17 |
-
"num_channels": 3,
|
18 |
-
"num_hidden_layers": 32,
|
19 |
-
"patch_size": 14,
|
20 |
-
"projection_dim": 1024,
|
21 |
-
"torch_dtype": "float16",
|
22 |
-
"transformers_version": "4.36.2"
|
23 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image_encoder/model.fp16.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ae616c24393dd1854372b0639e5541666f7521cbe219669255e865cb7f89466a
|
3 |
-
size 1264217240
|
|
|
|
|
|
|
|
image_encoder/model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ed1e5af7b4042ca30ec29999a4a5cfcac90b7fb610fd05ace834f2dcbb763eab
|
3 |
-
size 2528371296
|
|
|
|
|
|
|
|
model_index.json
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_class_name": "I2VGenXLPipeline",
|
3 |
-
"_diffusers_version": "0.26.1",
|
4 |
-
"_name_or_path": "i2vgen-xl",
|
5 |
-
"feature_extractor": [
|
6 |
-
"transformers",
|
7 |
-
"CLIPImageProcessor"
|
8 |
-
],
|
9 |
-
"image_encoder": [
|
10 |
-
"transformers",
|
11 |
-
"CLIPVisionModelWithProjection"
|
12 |
-
],
|
13 |
-
"scheduler": [
|
14 |
-
"diffusers",
|
15 |
-
"DDIMScheduler"
|
16 |
-
],
|
17 |
-
"text_encoder": [
|
18 |
-
"transformers",
|
19 |
-
"CLIPTextModel"
|
20 |
-
],
|
21 |
-
"tokenizer": [
|
22 |
-
"transformers",
|
23 |
-
"CLIPTokenizer"
|
24 |
-
],
|
25 |
-
"unet": [
|
26 |
-
"diffusers",
|
27 |
-
"I2VGenXLUNet"
|
28 |
-
],
|
29 |
-
"vae": [
|
30 |
-
"diffusers",
|
31 |
-
"AutoencoderKL"
|
32 |
-
]
|
33 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scheduler/scheduler_config.json
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_class_name": "DDIMScheduler",
|
3 |
-
"_diffusers_version": "0.26.1",
|
4 |
-
"beta_end": 0.02,
|
5 |
-
"beta_schedule": "squaredcos_cap_v2",
|
6 |
-
"beta_start": 0.0001,
|
7 |
-
"clip_sample": false,
|
8 |
-
"clip_sample_range": 1.0,
|
9 |
-
"dynamic_thresholding_ratio": 0.995,
|
10 |
-
"num_train_timesteps": 1000,
|
11 |
-
"prediction_type": "v_prediction",
|
12 |
-
"rescale_betas_zero_snr": true,
|
13 |
-
"sample_max_value": 1.0,
|
14 |
-
"set_alpha_to_one": true,
|
15 |
-
"steps_offset": 1,
|
16 |
-
"thresholding": false,
|
17 |
-
"timestep_spacing": "leading",
|
18 |
-
"trained_betas": null
|
19 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_encoder/config.json
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "i2vgen-xl/text_encoder",
|
3 |
-
"architectures": [
|
4 |
-
"CLIPTextModel"
|
5 |
-
],
|
6 |
-
"attention_dropout": 0.0,
|
7 |
-
"bos_token_id": 0,
|
8 |
-
"dropout": 0.0,
|
9 |
-
"eos_token_id": 2,
|
10 |
-
"hidden_act": "gelu",
|
11 |
-
"hidden_size": 1024,
|
12 |
-
"initializer_factor": 1.0,
|
13 |
-
"initializer_range": 0.02,
|
14 |
-
"intermediate_size": 4096,
|
15 |
-
"layer_norm_eps": 1e-05,
|
16 |
-
"max_position_embeddings": 77,
|
17 |
-
"model_type": "clip_text_model",
|
18 |
-
"num_attention_heads": 16,
|
19 |
-
"num_hidden_layers": 24,
|
20 |
-
"pad_token_id": 1,
|
21 |
-
"projection_dim": 1024,
|
22 |
-
"torch_dtype": "float16",
|
23 |
-
"transformers_version": "4.36.2",
|
24 |
-
"vocab_size": 49408
|
25 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_encoder/model.fp16.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:0eb4cf70d7768f4f61bb25e98b2ddaf545f6b33ecc2d7cc3eaa4670a09722fd2
|
3 |
-
size 706014768
|
|
|
|
|
|
|
|
text_encoder/model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:bd94a7ea6922e8028227567fe14e04d2989eec31c482e0813e9006afea6637f1
|
3 |
-
size 1411983168
|
|
|
|
|
|
|
|
tokenizer/merges.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": {
|
3 |
-
"content": "<|startoftext|>",
|
4 |
-
"lstrip": false,
|
5 |
-
"normalized": true,
|
6 |
-
"rstrip": false,
|
7 |
-
"single_word": false
|
8 |
-
},
|
9 |
-
"eos_token": {
|
10 |
-
"content": "<|endoftext|>",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": false,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"pad_token": {
|
17 |
-
"content": "<|endoftext|>",
|
18 |
-
"lstrip": false,
|
19 |
-
"normalized": false,
|
20 |
-
"rstrip": false,
|
21 |
-
"single_word": false
|
22 |
-
},
|
23 |
-
"unk_token": {
|
24 |
-
"content": "<|endoftext|>",
|
25 |
-
"lstrip": false,
|
26 |
-
"normalized": false,
|
27 |
-
"rstrip": false,
|
28 |
-
"single_word": false
|
29 |
-
}
|
30 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer/tokenizer_config.json
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"add_prefix_space": false,
|
3 |
-
"added_tokens_decoder": {
|
4 |
-
"49406": {
|
5 |
-
"content": "<|startoftext|>",
|
6 |
-
"lstrip": false,
|
7 |
-
"normalized": true,
|
8 |
-
"rstrip": false,
|
9 |
-
"single_word": false,
|
10 |
-
"special": true
|
11 |
-
},
|
12 |
-
"49407": {
|
13 |
-
"content": "<|endoftext|>",
|
14 |
-
"lstrip": false,
|
15 |
-
"normalized": false,
|
16 |
-
"rstrip": false,
|
17 |
-
"single_word": false,
|
18 |
-
"special": true
|
19 |
-
}
|
20 |
-
},
|
21 |
-
"bos_token": "<|startoftext|>",
|
22 |
-
"clean_up_tokenization_spaces": true,
|
23 |
-
"do_lower_case": true,
|
24 |
-
"eos_token": "<|endoftext|>",
|
25 |
-
"errors": "replace",
|
26 |
-
"model_max_length": 77,
|
27 |
-
"pad_token": "<|endoftext|>",
|
28 |
-
"tokenizer_class": "CLIPTokenizer",
|
29 |
-
"unk_token": "<|endoftext|>"
|
30 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer/vocab.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
unet/config.json
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_class_name": "I2VGenXLUNet",
|
3 |
-
"_diffusers_version": "0.26.1",
|
4 |
-
"_name_or_path": "i2vgen-xl/unet",
|
5 |
-
"attention_head_dim": 64,
|
6 |
-
"block_out_channels": [
|
7 |
-
320,
|
8 |
-
640,
|
9 |
-
1280,
|
10 |
-
1280
|
11 |
-
],
|
12 |
-
"cross_attention_dim": 1024,
|
13 |
-
"down_block_types": [
|
14 |
-
"CrossAttnDownBlock3D",
|
15 |
-
"CrossAttnDownBlock3D",
|
16 |
-
"CrossAttnDownBlock3D",
|
17 |
-
"DownBlock3D"
|
18 |
-
],
|
19 |
-
"in_channels": 4,
|
20 |
-
"layers_per_block": 2,
|
21 |
-
"norm_num_groups": 32,
|
22 |
-
"num_attention_heads": 64,
|
23 |
-
"out_channels": 4,
|
24 |
-
"sample_size": 32,
|
25 |
-
"up_block_types": [
|
26 |
-
"UpBlock3D",
|
27 |
-
"CrossAttnUpBlock3D",
|
28 |
-
"CrossAttnUpBlock3D",
|
29 |
-
"CrossAttnUpBlock3D"
|
30 |
-
]
|
31 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
unet/diffusion_pytorch_model.fp16.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6ef043141380ab4f5f0698d0b735e4020d6049819e3c756ddbe2672a48a466d4
|
3 |
-
size 2841124432
|
|
|
|
|
|
|
|
unet/diffusion_pytorch_model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:3e7c73b3ff159580a1a6535b1ccb473b09a2f40853c03f5d546db70632456ab8
|
3 |
-
size 5682063336
|
|
|
|
|
|
|
|
vae/config.json
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_class_name": "AutoencoderKL",
|
3 |
-
"_diffusers_version": "0.26.1",
|
4 |
-
"_name_or_path": "i2vgen-xl/vae",
|
5 |
-
"act_fn": "silu",
|
6 |
-
"block_out_channels": [
|
7 |
-
128,
|
8 |
-
256,
|
9 |
-
512,
|
10 |
-
512
|
11 |
-
],
|
12 |
-
"down_block_types": [
|
13 |
-
"DownEncoderBlock2D",
|
14 |
-
"DownEncoderBlock2D",
|
15 |
-
"DownEncoderBlock2D",
|
16 |
-
"DownEncoderBlock2D"
|
17 |
-
],
|
18 |
-
"force_upcast": true,
|
19 |
-
"in_channels": 3,
|
20 |
-
"latent_channels": 4,
|
21 |
-
"layers_per_block": 2,
|
22 |
-
"norm_num_groups": 32,
|
23 |
-
"out_channels": 3,
|
24 |
-
"sample_size": 768,
|
25 |
-
"scaling_factor": 0.18125,
|
26 |
-
"up_block_types": [
|
27 |
-
"UpDecoderBlock2D",
|
28 |
-
"UpDecoderBlock2D",
|
29 |
-
"UpDecoderBlock2D",
|
30 |
-
"UpDecoderBlock2D"
|
31 |
-
]
|
32 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vae/diffusion_pytorch_model.fp16.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:3e4c08995484ee61270175e9e7a072b66a6e4eeb5f0c266667fe1f45b90daf9a
|
3 |
-
size 167335342
|
|
|
|
|
|
|
|
vae/diffusion_pytorch_model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2aa1f43011b553a4cba7f37456465cdbd48aab7b54b9348b890e8058ea7683ec
|
3 |
-
size 334643268
|
|
|
|
|
|
|
|