ali619's picture
Update
58cee15
|
raw
history blame
2.06 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert-base-uncased-finetuned-emotion-detector-from-text
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9345
          - name: F1
            type: f1
            value: 0.9346813045403889

distilbert-base-uncased-finetuned-emotion-detector-from-text

This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1628
  • Accuracy: 0.9345
  • F1: 0.9347

Model description

This model is trained on english tweets and can classify emotions in text files.

Intended uses & limitations

More information needed

Training and evaluation data

16,000 train samples 2,000 validation samples 2,000 test samples

Training procedure

Finetunning distilbert-base-uncased

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.1038 1.0 250 0.1757 0.9325 0.9329
0.094 2.0 500 0.1628 0.9345 0.9347

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1