File size: 4,364 Bytes
f09623f 53b38a4 f09623f ec64c29 f09623f 53b38a4 e4613fe 53b38a4 e4613fe 53b38a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
---
title: Arabic2English
colorFrom: blue
colorTo: purple
sdk: gradio
license: mit
language:
- en
- ar
pipeline_tag: translation
metrics:
- accuracy
library_name: transformers
---
# Model Card
## Overview
- **Model name:** Arabic2English Translation
- **Model description:** Translates between Arabic and English.
- **Authors:** Alif Al Hasan
- **Repository link:** https://huggingface.co/spaces/alifalhasan/arabic2english/tree/main
- **License:** MIT
- **Contact information:** [email protected]
---
# Arabic2English Translation
A simple and well designed web app to translate between **Arabic** and **English**.
### Requirements
- gradio
- torch>=1.6
- torchtext==0.6
- transformers
- nltk
- pandas
- spacy
- https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1-py3-none-any.whl
### Table Of Contents
- [Introduction](#introduction)
- [Model Architecture](#model-architecture)
- [Project Architecture](#project-architecture)
- [How To Run](#how-to-run)
- [License](#license)
- [Contributor](#contributor)
### Introduction
A simple and well designed web app to identify the emblem of the top 5 teams of **EPL**. This model has been trained with a balanced dataset which contains almost **5k** images of the emblems of the teams.
### Model Architecture
The model utilizes a straightforward convolutional neural network (CNN) architecture, comprising the following layers:
1. **Convolutional Layer:**
- 32 filters, each of size 3x3
- ReLU activation function
- Input shape: 224x224x3 (RGB images)
- Extracts spatial features from input images.
2. **Max Pooling Layer:**
- Pool size: 2x2
- Reduces spatial dimensions for capturing more global features.
3. **Flattening Layer:**
- Flattens the 2D feature maps into a 1D vector for input to dense layers.
4. **Dense Layer 1:**
- 64 neurons
- ReLU activation function
5. **Output Layer (Dense Layer 2):**
- 5 neurons (matching the number of classes)
- Softmax activation to produce probability scores for each class.
**Key Points:**
- Input image size: 224x224 pixels
- Optimizer: Adam with a learning rate of 0.001
- Loss function: Categorical crossentropy
- Performance metric: Accuracy
**Visual Representation:**
[Input image (224x224x3)] --> [Conv2D] --> [MaxPooling2D] --> [Flatten] --> [Dense 1] --> [Output Layer (Dense 2)] --> [Predicted class]
### Prject Architecture
```
βββ data
β βββ arsenal - images of arsenal's emblem.
β βββ chelsea - images of chelsea's emblem.
β βββ liverpool - images of liverpool's emblem.
β βββ manchester-city - images of manchester-city's emblem.
β βββ manchester-united - images of united's emblem.
β
β
βββ model
β βββ football_logo_model.h5 - generated model.
β
β
βββ src
β βββ classify
β βββ classify.py - this module classifies the emblem from input image.
β βββ train
β βββ trainer.py - this module trains the model.
β
β
βββ app.py - this module starts the app interface.
β
β
βββ LICENSE - license file of this project.
β
β
βββ README.md - readme file of this project.
β
β
βββ requirements.txt - list of required packages.
```
### How To Run
First, install dependencies
```bash
# clone project
git clone https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier
# install project
cd epl-top5-emblem-classifier
pip install -r requirements.txt
```
Next, download the dataset from [here](https://drive.google.com/file/d/1O5Mm-86AlUf5fUYf1NS8J_t22h7h_UbQ/view?usp=sharing). First unzip the folder. **dataset** folder contains **five** more folders. Copy them and paste into the **data** directory of this project folder.
Now train the model using this command:
```bash
python src/train/trainer.py
```
Finally, deploy the model using this command:
```bash
python app.py
```
### License
Distributed under the MIT License. See `LICENSE` for more information.
### Contributor
Alif Al Hasan - [@alifalhasan](https://huggingface.co/alifalhasan) - [email protected]
Project Link: [https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier](https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier) |