File size: 4,364 Bytes
f09623f
53b38a4
 
 
 
f09623f
 
 
ec64c29
f09623f
53b38a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4613fe
 
53b38a4
 
 
e4613fe
 
 
 
 
 
 
 
53b38a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
title: Arabic2English
colorFrom: blue
colorTo: purple
sdk: gradio
license: mit
language:
- en
- ar
pipeline_tag: translation
metrics:
- accuracy
library_name: transformers
---

# Model Card

## Overview

- **Model name:** Arabic2English Translation
- **Model description:** Translates between Arabic and English.
- **Authors:** Alif Al Hasan
- **Repository link:** https://huggingface.co/spaces/alifalhasan/arabic2english/tree/main
- **License:** MIT
- **Contact information:** [email protected]


---


# Arabic2English Translation
A simple and well designed web app to translate between **Arabic** and **English**.


### Requirements
- gradio
- torch>=1.6
- torchtext==0.6
- transformers
- nltk
- pandas
- spacy
- https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1-py3-none-any.whl


### Table Of Contents
-  [Introduction](#introduction)
-  [Model Architecture](#model-architecture)
-  [Project Architecture](#project-architecture)
-  [How To Run](#how-to-run)
-  [License](#license)
-  [Contributor](#contributor)


### Introduction
A simple and well designed web app to identify the emblem of the top 5 teams of **EPL**. This model has been trained with a balanced dataset which contains almost **5k** images of the emblems of the teams.


### Model Architecture
The model utilizes a straightforward convolutional neural network (CNN) architecture, comprising the following layers:

1. **Convolutional Layer:**
   - 32 filters, each of size 3x3
   - ReLU activation function
   - Input shape: 224x224x3 (RGB images)
   - Extracts spatial features from input images.

2. **Max Pooling Layer:**
   - Pool size: 2x2
   - Reduces spatial dimensions for capturing more global features.

3. **Flattening Layer:**
   - Flattens the 2D feature maps into a 1D vector for input to dense layers.

4. **Dense Layer 1:**
   - 64 neurons
   - ReLU activation function

5. **Output Layer (Dense Layer 2):**
   - 5 neurons (matching the number of classes)
   - Softmax activation to produce probability scores for each class.

**Key Points:**
- Input image size: 224x224 pixels
- Optimizer: Adam with a learning rate of 0.001
- Loss function: Categorical crossentropy
- Performance metric: Accuracy

**Visual Representation:**
[Input image (224x224x3)] --> [Conv2D] --> [MaxPooling2D] --> [Flatten] --> [Dense 1] --> [Output Layer (Dense 2)] --> [Predicted class]


### Prject Architecture
```
β”œβ”€β”€  data
β”‚    └── arsenal  - images of arsenal's emblem.
β”‚    └── chelsea  - images of chelsea's emblem.
β”‚    └── liverpool  - images of liverpool's emblem.
β”‚    └── manchester-city  - images of manchester-city's emblem.
β”‚    └── manchester-united  - images of united's emblem.
β”‚
β”‚
β”œβ”€β”€  model  
β”‚    └── football_logo_model.h5  - generated model.
β”‚ 
β”‚
β”œβ”€β”€  src
β”‚    └── classify
β”‚        └── classify.py  - this module classifies the emblem from input image.
β”‚    └── train
β”‚        └── trainer.py  - this module trains the model.
β”‚
β”‚
β”œβ”€β”€  app.py - this module starts the app interface.
β”‚
β”‚
β”œβ”€β”€  LICENSE - license file of this project.
β”‚
β”‚
β”œβ”€β”€  README.md - readme file of this project.
β”‚
β”‚
β”œβ”€β”€  requirements.txt - list of required packages.
```

### How To Run
First, install dependencies   
```bash
# clone project   
git clone https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier

# install project   
cd epl-top5-emblem-classifier 
pip install -r requirements.txt
```

Next, download the dataset from [here](https://drive.google.com/file/d/1O5Mm-86AlUf5fUYf1NS8J_t22h7h_UbQ/view?usp=sharing). First unzip the folder. **dataset** folder contains **five** more folders. Copy them and paste into the **data** directory of this project folder.

Now train the model using this command:  
```bash
python src/train/trainer.py    
```

Finally, deploy the model using this command:  
```bash
python app.py    
```

### License
Distributed under the MIT License. See `LICENSE` for more information.


### Contributor
Alif Al Hasan - [@alifalhasan](https://huggingface.co/alifalhasan) - [email protected]

Project Link: [https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier](https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier)