julien-c's picture
julien-c HF staff
Migrate model card from transformers-repo
940db5c
---
language: fr
---
# CamemBERT: a Tasty French Language Model
## Introduction
[CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model.
It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains.
For further information or requests, please go to [Camembert Website](https://camembert-model.fr/)
## Pre-trained models
| Model | #params | Arch. | Training data |
|--------------------------------|--------------------------------|-------|-----------------------------------|
| `camembert-base` | 110M | Base | OSCAR (138 GB of text) |
| `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) |
| `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) |
| `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) |
| `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) |
| `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) |
## How to use CamemBERT with HuggingFace
##### Load CamemBERT and its sub-word tokenizer :
```python
from transformers import CamembertModel, CamembertTokenizer
# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large".
tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-ccnet-4gb")
camembert = CamembertModel.from_pretrained("camembert/camembert-base-ccnet-4gb")
camembert.eval() # disable dropout (or leave in train mode to finetune)
```
##### Filling masks using pipeline
```python
from transformers import pipeline
camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-ccnet-4gb", tokenizer="camembert/camembert-base-ccnet-4gb")
results = camembert_fill_mask("Le camembert est-il <mask> ?")
# results
#[{'sequence': '<s> Le camembert est-il sain?</s>', 'score': 0.07001790404319763, 'token': 10286},
#{'sequence': '<s> Le camembert est-il français?</s>', 'score': 0.057594332844018936, 'token': 384},
#{'sequence': '<s> Le camembert est-il bon?</s>', 'score': 0.04098724573850632, 'token': 305},
#{'sequence': '<s> Le camembert est-il périmé?</s>', 'score': 0.03486393392086029, 'token': 30862},
#{'sequence': '<s> Le camembert est-il cher?</s>', 'score': 0.021535946056246758, 'token': 1604}]
```
##### Extract contextual embedding features from Camembert output
```python
import torch
# Tokenize in sub-words with SentencePiece
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !")
# ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!']
# 1-hot encode and add special starting and end tokens
encoded_sentence = tokenizer.encode(tokenized_sentence)
# [5, 133, 22, 1250, 16, 12034, 14324, 81, 76, 6]
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !")
# Feed tokens to Camembert as a torch tensor (batch dim 1)
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
embeddings, _ = camembert(encoded_sentence)
# embeddings.detach()
# embeddings.size torch.Size([1, 10, 768])
#tensor([[[ 0.0331, 0.0095, -0.2776, ..., 0.2875, -0.0827, -0.2467],
# [-0.1348, 0.0478, -0.5409, ..., 0.8330, 0.0467, 0.0662],
# [ 0.0920, -0.0264, 0.0177, ..., 0.1112, 0.0108, -0.1123],
# ...,
```
##### Extract contextual embedding features from all Camembert layers
```python
from transformers import CamembertConfig
# (Need to reload the model with new config)
config = CamembertConfig.from_pretrained("camembert/camembert-base-ccnet-4gb", output_hidden_states=True)
camembert = CamembertModel.from_pretrained("camembert/camembert-base-ccnet-4gb", config=config)
embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
# all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers)
all_layer_embeddings[5]
# layer 5 contextual embedding : size torch.Size([1, 10, 768])
#tensor([[[-0.0144, 0.1855, 0.4895, ..., -0.1537, 0.0107, -0.2293],
# [-0.6664, -0.0880, -0.1539, ..., 0.3635, 0.4047, 0.1258],
# [ 0.0511, 0.0540, 0.2545, ..., 0.0709, -0.0288, -0.0779],
# ...,
```
## Authors
CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
## Citation
If you use our work, please cite:
```bibtex
@inproceedings{martin2020camembert,
title={CamemBERT: a Tasty French Language Model},
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
```