Edit model card

model

This is a merge of pre-trained language models created using mergekit.

Merge Method

This model was merged using the DARE TIES merge method using Locutusque/llama-3-neural-chat-v1-8b as a base.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

base_model: Locutusque/llama-3-neural-chat-v1-8b
dtype: bfloat16
merge_method: dare_ties
parameters:
  int8_mask: 1.0
  normalize: 0.0
slices:
- sources:
  - layer_range: [0, 4]
    model: cognitivecomputations/dolphin-2.9-llama3-8b
    parameters:
      density: 1.0
      weight: 0.6
  - layer_range: [0, 4]
    model: Weyaxi/Einstein-v6.1-Llama3-8B
    parameters:
      density: 0.6
      weight: 0.5
  - layer_range: [0, 4]
    model: Locutusque/llama-3-neural-chat-v1-8b
    parameters:
      density: 1.0
      weight: 0.5
- sources:
  - layer_range: [4, 8]
    model: cognitivecomputations/dolphin-2.9-llama3-8b
    parameters:
      density: 0.8
      weight: 0.1
  - layer_range: [4, 8]
    model: Weyaxi/Einstein-v6.1-Llama3-8B
    parameters:
      density: 1.0
      weight: 0.2
  - layer_range: [4, 8]
    model: Locutusque/llama-3-neural-chat-v1-8b
    parameters:
      density: 1.0
      weight: 0.7
- sources:
  - layer_range: [8, 12]
    model: cognitivecomputations/dolphin-2.9-llama3-8b
    parameters:
      density: 0.7
      weight: 0.1
  - layer_range: [8, 12]
    model: Weyaxi/Einstein-v6.1-Llama3-8B
    parameters:
      density: 0.7
      weight: 0.2
  - layer_range: [8, 12]
    model: Locutusque/llama-3-neural-chat-v1-8b
    parameters:
      density: 0.7
      weight: 0.6
- sources:
  - layer_range: [12, 16]
    model: cognitivecomputations/dolphin-2.9-llama3-8b
    parameters:
      density: 0.9
      weight: 0.2
  - layer_range: [12, 16]
    model: Weyaxi/Einstein-v6.1-Llama3-8B
    parameters:
      density: 0.6
      weight: 0.6
  - layer_range: [12, 16]
    model: Locutusque/llama-3-neural-chat-v1-8b
    parameters:
      density: 0.7
      weight: 0.3
- sources:
  - layer_range: [16, 20]
    model: cognitivecomputations/dolphin-2.9-llama3-8b
    parameters:
      density: 1.0
      weight: 0.2
  - layer_range: [16, 20]
    model: Weyaxi/Einstein-v6.1-Llama3-8B
    parameters:
      density: 1.0
      weight: 0.2
  - layer_range: [16, 20]
    model: Locutusque/llama-3-neural-chat-v1-8b
    parameters:
      density: 0.9
      weight: 0.4
- sources:
  - layer_range: [20, 24]
    model: cognitivecomputations/dolphin-2.9-llama3-8b
    parameters:
      density: 0.7
      weight: 0.2
  - layer_range: [20, 24]
    model: Weyaxi/Einstein-v6.1-Llama3-8B
    parameters:
      density: 0.9
      weight: 0.3
  - layer_range: [20, 24]
    model: Locutusque/llama-3-neural-chat-v1-8b
    parameters:
      density: 1.0
      weight: 0.4
- sources:
  - layer_range: [24, 28]
    model: cognitivecomputations/dolphin-2.9-llama3-8b
    parameters:
      density: 1.0
      weight: 0.4
  - layer_range: [24, 28]
    model: Weyaxi/Einstein-v6.1-Llama3-8B
    parameters:
      density: 0.8
      weight: 0.2
  - layer_range: [24, 28]
    model: Locutusque/llama-3-neural-chat-v1-8b
    parameters:
      density: 0.9
      weight: 0.4
- sources:
  - layer_range: [28, 32]
    model: cognitivecomputations/dolphin-2.9-llama3-8b
    parameters:
      density: 1.0
      weight: 0.3
  - layer_range: [28, 32]
    model: Weyaxi/Einstein-v6.1-Llama3-8B
    parameters:
      density: 0.9
      weight: 0.2
  - layer_range: [28, 32]
    model: Locutusque/llama-3-neural-chat-v1-8b
    parameters:
      density: 1.0
      weight: 0.3

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 68.81
AI2 Reasoning Challenge (25-Shot) 61.86
HellaSwag (10-Shot) 84.29
MMLU (5-Shot) 65.53
TruthfulQA (0-shot) 54.08
Winogrande (5-shot) 78.85
GSM8k (5-shot) 68.23
Downloads last month
26
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for aloobun/CosmicBun-8B

Spaces using aloobun/CosmicBun-8B 5

Collection including aloobun/CosmicBun-8B

Evaluation results