model documentation

#3
by nazneen - opened
Files changed (1) hide show
  1. README.md +170 -4
README.md CHANGED
@@ -1,16 +1,182 @@
1
- ---
2
- language: "English"
3
  tags:
4
  - token-classification
5
  - NER
6
  - Biomedical
7
  - Chemicals
 
8
  datasets:
9
  - BC5CDR-chemicals
10
  - BC4CHEMD
11
- license: apache-2.0
12
  ---
13
 
 
 
 
 
 
 
 
14
  BioBERT model fine-tuned in NER task with BC5CDR-chemicals and BC4CHEMD corpus.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- This was fine-tuned in order to use it in a BioNER/BioNEN system which is available at: https://github.com/librairy/bio-ner
 
1
+ language: en
2
+ license: apache-2.0
3
  tags:
4
  - token-classification
5
  - NER
6
  - Biomedical
7
  - Chemicals
8
+
9
  datasets:
10
  - BC5CDR-chemicals
11
  - BC4CHEMD
12
+
13
  ---
14
 
15
+
16
+ # Model Card for biobert Chemical NER
17
+
18
+ # Model Details
19
+
20
+ ## Model Description
21
+
22
  BioBERT model fine-tuned in NER task with BC5CDR-chemicals and BC4CHEMD corpus.
23
+
24
+ - **Developed by:** librAIry
25
+ - **Shared by [Optional]:** Alvaro A
26
+ - **Model type:** Token Classification
27
+ - **Language(s) (NLP):** More information needed
28
+ - **License:** Apache 2.0
29
+ - **Parent Model:** NER
30
+ - **Resources for more information:**
31
+ - [GitHub Repo](https://github.com/librairy/bio-ner)
32
+ - [Associated Paper](https://oa.upm.es/67933/)
33
+
34
+
35
+
36
+ # Uses
37
+
38
+
39
+ ## Direct Use
40
+ This model can be used for the task of token classification.
41
+
42
+ ## Downstream Use [Optional]
43
+
44
+ More information needed.
45
+
46
+ ## Out-of-Scope Use
47
+
48
+ The model should not be used to intentionally create hostile or alienating environments for people.
49
+
50
+ # Bias, Risks, and Limitations
51
+
52
+
53
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
54
+
55
+
56
+
57
+ ## Recommendations
58
+
59
+
60
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
61
+
62
+ # Training Details
63
+
64
+ ## Training Data
65
+
66
+ More information needed
67
+
68
+ ## Training Procedure
69
+
70
+
71
+ ### Preprocessing
72
+
73
+ More information needed
74
+
75
+
76
+
77
+
78
+
79
+ ### Speeds, Sizes, Times
80
+ More information needed
81
+
82
+
83
+ # Evaluation
84
+
85
+
86
+ ## Testing Data, Factors & Metrics
87
+
88
+ ### Testing Data
89
+
90
+ More information needed
91
+
92
+
93
+ ### Factors
94
+ More information needed
95
+
96
+ ### Metrics
97
+
98
+ More information needed
99
+
100
+
101
+ ## Results
102
+
103
+ More information needed
104
+
105
+
106
+ # Model Examination
107
+
108
+ More information needed
109
+
110
+ # Environmental Impact
111
+
112
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
113
+
114
+ - **Hardware Type:** More information needed
115
+ - **Fine-tuning process**: was done in Google Collab using a TPU.
116
+ - **Hours used:** More information needed
117
+ - **Cloud Provider:** More information needed
118
+ - **Compute Region:** More information needed
119
+ - **Carbon Emitted:** More information needed
120
+
121
+ # Technical Specifications [optional]
122
+
123
+ ## Model Architecture and Objective
124
+
125
+ More information needed
126
+
127
+ ## Compute Infrastructure
128
+
129
+ More information needed
130
+
131
+ ### Hardware
132
+
133
+
134
+ More information needed
135
+
136
+ ### Software
137
+
138
+ More information needed.
139
+
140
+ # Citation
141
+
142
+
143
+ **BibTeX:**
144
+
145
+
146
+ More information needed.
147
+
148
+
149
+
150
+
151
+ # Glossary [optional]
152
+ More information needed
153
+
154
+ # More Information [optional]
155
+ More information needed
156
+
157
+
158
+ # Model Card Authors [optional]
159
+
160
+ Alvaro A in collaboration with Ezi Ozoani and the Hugging Face team
161
+
162
+
163
+ # Model Card Contact
164
+
165
+ More information needed
166
+
167
+ # How to Get Started with the Model
168
+
169
+ Use the code below to get started with the model.
170
+
171
+ <details>
172
+ <summary> Click to expand </summary>
173
+
174
+ ```python
175
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
176
+
177
+ tokenizer = AutoTokenizer.from_pretrained("alvaroalon2/biobert_chemical_ner")
178
+
179
+ model = AutoModelForTokenClassification.from_pretrained("alvaroalon2/biobert_chemical_ner")
180
+ ```
181
+ </details>
182