metadata
base_model: sentence-transformers/stsb-xlm-r-multilingual
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:19755
- loss:CosineSimilarityLoss
widget:
- source_sentence: Authorization to Hold a Cultural Event
sentences:
- Renewable Energy Accreditation Certificate
- شهادة إدارة الموارد المائية
- شهادة السلامة الصناعية
- source_sentence: Phosphate Fertilizer Import License
sentences:
- >-
Licence d'exploitation d'une usine de production de matériaux avancés
pour la construction
- Certificat de propriété conjointe
- ' "Guarantee Form Filled and Signed"'
- source_sentence: ' "Application for the Adaptation and Classification of Construction and Public Works Laboratories."'
sentences:
- ' "Demande d''adaptation et de classification des laboratoires de construction et de travaux publics"'
- رخصة بناء مصنع للصناعات الخفيفة
- Certificat de non-bénéfice de programmes d'aide sociale
- source_sentence: Certificat d'importation d'équipements médicaux
sentences:
- دبلوم التكوين في علوم البحار
- رخصة استغلال محطة كهربائية
- Nuclear Equipment Factory Creation License
- source_sentence: Virtual Reality Innovation Center Exploitation License
sentences:
- ' "نسخة من بطاقة التعريف الوطنية أو جواز السفر."'
- رخصة استغلال مركز ابتكار تقنيات الواقع الافتراضي
- Medical Equipment Import Certificate
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-xlm-r-multilingual
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: eval
type: eval
metrics:
- type: pearson_cosine
value: 0.9937461553619508
name: Pearson Cosine
- type: spearman_cosine
value: 0.8656711043975902
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9862199187169717
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8646030016681072
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9863097776981202
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8646004452560553
name: Spearman Euclidean
- type: pearson_dot
value: 0.9687884311170258
name: Pearson Dot
- type: spearman_dot
value: 0.8657032187055717
name: Spearman Dot
- type: pearson_max
value: 0.9937461553619508
name: Pearson Max
- type: spearman_max
value: 0.8657032187055717
name: Spearman Max
SentenceTransformer based on sentence-transformers/stsb-xlm-r-multilingual
This is a sentence-transformers model finetuned from sentence-transformers/stsb-xlm-r-multilingual. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/stsb-xlm-r-multilingual
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("amahdaouy/xlmrsim-mar_cos")
# Run inference
sentences = [
'Virtual Reality Innovation Center Exploitation License',
'رخصة استغلال مركز ابتكار تقنيات الواقع الافتراضي',
' "نسخة من بطاقة التعريف الوطنية أو جواز السفر."',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9937 |
spearman_cosine | 0.8657 |
pearson_manhattan | 0.9862 |
spearman_manhattan | 0.8646 |
pearson_euclidean | 0.9863 |
spearman_euclidean | 0.8646 |
pearson_dot | 0.9688 |
spearman_dot | 0.8657 |
pearson_max | 0.9937 |
spearman_max | 0.8657 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 19,755 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 4 tokens
- mean: 12.66 tokens
- max: 110 tokens
- min: 4 tokens
- mean: 12.34 tokens
- max: 110 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label Seasonal Commercial Activity License
Certificat de participation aux activités sportives
0.0
Authorization to Hold a Cultural Event
شهادة إدارة الموارد المائية
0.0
Permis d'exploitation des ports maritimes
Seaport Exploitation Permit
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 2multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | eval_spearman_max |
---|---|---|---|
0.1618 | 100 | - | 0.8617 |
0.3236 | 200 | - | 0.8639 |
0.4854 | 300 | - | 0.8639 |
0.6472 | 400 | - | 0.8644 |
0.8091 | 500 | 0.0228 | 0.8652 |
0.9709 | 600 | - | 0.8652 |
1.0 | 618 | - | 0.8652 |
1.1327 | 700 | - | 0.8650 |
1.2945 | 800 | - | 0.8653 |
1.4563 | 900 | - | 0.8651 |
1.6181 | 1000 | 0.0055 | 0.8651 |
1.7799 | 1100 | - | 0.8657 |
1.9417 | 1200 | - | 0.8657 |
2.0 | 1236 | - | 0.8657 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}