meme1 / README.md
ambientocclusion's picture
Model card auto-generated by SimpleTuner
df7b5bd verified
metadata
license: creativeml-openrail-m
base_model: sayakpaul/FLUX.1-merged
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - lora
  - template:sd-lora
inference: true
widget:
  - text: unconditional (blank prompt)
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_0_0.png
  - text: a photo of a man
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_1_0.png

meme1

This is a LoRA derived from sayakpaul/FLUX.1-merged.

The main validation prompt used during training was:

a photo of a man

Validation settings

  • CFG: 7.5
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
a photo of a man
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 99
  • Training steps: 2100
  • Learning rate: 0.0005
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: bf16
  • Quantised: Yes: int8-quanto
  • Xformers: Not used
  • LoRA Rank: 32
  • LoRA Alpha: 32.0
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

carbman1

  • Repeats: 0
  • Total number of images: 21
  • Total number of aspect buckets: 1
  • Resolution: 1024 px
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'sayakpaul/FLUX.1-merged'
adapter_id = 'ambientocclusion/meme1'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "a photo of a man"


pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=7.5,
).images[0]
image.save("output.png", format="PNG")