|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- imagenet-1k |
|
metrics: |
|
- accuracy |
|
tags: |
|
- RyzenAI |
|
- vision |
|
- classification |
|
- pytorch |
|
--- |
|
|
|
# ESE_VoVNet39b |
|
Quantized ESE_VoVNet39b model that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com/en/latest/). |
|
|
|
|
|
## Model description |
|
VoVNet was first introduced in the paper [An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection](https://arxiv.org/abs/1904.09730). Pretrained on ImageNet-1k in timm by Ross Wightman using RandAugment RA recipe. |
|
|
|
The model implementation is from [timm](https://huggingface.co/timm/ese_vovnet39b.ra_in1k). |
|
|
|
|
|
## How to use |
|
|
|
### Installation |
|
|
|
Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI. |
|
Run the following script to install pre-requisites for this model. |
|
|
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
|
|
### Data Preparation |
|
|
|
Follow [ImageNet](https://huggingface.co/datasets/imagenet-1k) to prepare dataset. |
|
|
|
### Model Evaluation |
|
|
|
```python |
|
python eval_onnx.py --onnx_model ese_vovnet39b_int.onnx --ipu --provider_config Path\To\vaip_config.json --data_dir /Path/To/Your/Dataset |
|
``` |
|
|
|
### Performance |
|
|
|
|Metric |Accuracy on IPU| |
|
| :----: | :----: | |
|
|Top1/Top5| 78.96% / 94.53%| |
|
|
|
|
|
```bibtex |
|
@misc{rw2019timm, |
|
author = {Ross Wightman}, |
|
title = {PyTorch Image Models}, |
|
year = {2019}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
doi = {10.5281/zenodo.4414861}, |
|
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} |
|
} |
|
``` |
|
|
|
```bibtex |
|
@inproceedings{lee2019energy, |
|
title = {An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection}, |
|
author = {Lee, Youngwan and Hwang, Joong-won and Lee, Sangrok and Bae, Yuseok and Park, Jongyoul}, |
|
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops}, |
|
year = {2019} |
|
} |
|
|
|
``` |