SentenceTransformer based on sentence-transformers/LaBSE
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/LaBSE
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("aminlouhichi/CDGSmilarity")
# Run inference
sentences = [
'Temps partiel surcotisé',
'Temps partiel surcotisé de droit',
'Départ définitif - Radiation des cadres',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 295 training samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string float details - min: 4 tokens
- mean: 9.31 tokens
- max: 20 tokens
- min: 4 tokens
- mean: 10.41 tokens
- max: 20 tokens
- min: 0.9
- mean: 0.95
- max: 1.0
- Samples:
premise hypothesis label Compte rendu d'entretien professionnel
Synthèse des discussions professionnelles
0.9820208462484844
Congé Accident de trajet
Arrêt de travail pour accident de trajet
0.9755981363214147
Retrait ou suppression du CTI (complément de traitement indiciaire)
Retrait du Complément de Traitement Indiciaire (CTI)
0.9524167934189104
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 74 evaluation samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string float details - min: 4 tokens
- mean: 10.26 tokens
- max: 25 tokens
- min: 5 tokens
- mean: 10.5 tokens
- max: 20 tokens
- min: 0.9
- mean: 0.95
- max: 1.0
- Samples:
premise hypothesis label Sanction disciplinaire
Mesure punitive suite à une violation du règlement
0.958828679924412
Départ définitif / Radiation - Décès
Départ définitif suite au décès d'un agent
0.9003635138326387
Nomination par intégration directe
Intégration immédiate avec nomination
0.9993378836623817
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 30warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 30max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.5263 | 10 | 12.4933 | - |
1.0526 | 20 | 10.5909 | - |
1.5789 | 30 | 7.0607 | - |
2.1053 | 40 | 4.7061 | - |
2.6316 | 50 | 4.7957 | - |
3.1579 | 60 | 4.624 | - |
3.6842 | 70 | 4.7854 | - |
4.2105 | 80 | 4.5902 | - |
4.7368 | 90 | 4.7051 | - |
5.2632 | 100 | 4.5562 | 4.6756 |
5.7895 | 110 | 4.6376 | - |
6.3158 | 120 | 4.4501 | - |
6.8421 | 130 | 4.5993 | - |
7.3684 | 140 | 4.4878 | - |
7.8947 | 150 | 4.5443 | - |
8.4211 | 160 | 4.3091 | - |
8.9474 | 170 | 4.6699 | - |
9.4737 | 180 | 4.3727 | - |
10.0 | 190 | 4.3888 | - |
10.5263 | 200 | 4.5099 | 5.3597 |
11.0526 | 210 | 4.3427 | - |
11.5789 | 220 | 4.4409 | - |
12.1053 | 230 | 4.3151 | - |
12.6316 | 240 | 4.3522 | - |
13.1579 | 250 | 4.3133 | - |
13.6842 | 260 | 4.3842 | - |
14.2105 | 270 | 4.2708 | - |
14.7368 | 280 | 4.387 | - |
15.2632 | 290 | 4.1131 | - |
15.7895 | 300 | 4.3394 | 5.5109 |
16.3158 | 310 | 4.2948 | - |
16.8421 | 320 | 4.3413 | - |
17.3684 | 330 | 4.1427 | - |
17.8947 | 340 | 4.5521 | - |
18.4211 | 350 | 4.2146 | - |
18.9474 | 360 | 4.2039 | - |
19.4737 | 370 | 4.1412 | - |
20.0 | 380 | 4.0869 | - |
20.5263 | 390 | 4.4763 | - |
21.0526 | 400 | 3.9572 | 5.7054 |
21.5789 | 410 | 4.2114 | - |
22.1053 | 420 | 4.2651 | - |
22.6316 | 430 | 4.2231 | - |
23.1579 | 440 | 4.0521 | - |
23.6842 | 450 | 4.3246 | - |
24.2105 | 460 | 3.9145 | - |
24.7368 | 470 | 4.1701 | - |
25.2632 | 480 | 4.0958 | - |
25.7895 | 490 | 4.1177 | - |
26.3158 | 500 | 4.2388 | 6.3162 |
26.8421 | 510 | 4.3043 | - |
27.3684 | 520 | 3.9634 | - |
27.8947 | 530 | 4.117 | - |
28.4211 | 540 | 4.1732 | - |
28.9474 | 550 | 4.1243 | - |
29.4737 | 560 | 3.7898 | - |
30.0 | 570 | 4.0227 | - |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for aminlouhichi/CDGSmilarity
Base model
sentence-transformers/LaBSE