metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: sentence-transformers/paraphrase-mpnet-base-v2
metrics:
- accuracy
widget:
- text: BI 8U-Q10-AP6X2-V1131 SENSOR QUICK DISCO
- text: 48-08-0551 FOLDING MITRE SAW STAND
- text: JAS-LEB04-M3 COMPACT SPEED CONTROLLER
- text: LWFS37C2R1025HS2/E37.5 RAIL
- text: '300108'
pipeline_tag: text-classification
inference: false
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.3217244143582435
name: Accuracy
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.3217 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("amitprgx/setfit-categorization")
# Run inference
preds = model("300108")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 4.7197 | 10 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0008 | 1 | 0.1444 | - |
0.0379 | 50 | 0.1563 | - |
0.0758 | 100 | 0.2163 | - |
0.1136 | 150 | 0.3125 | - |
0.1515 | 200 | 0.2152 | - |
0.1894 | 250 | 0.2731 | - |
0.2273 | 300 | 0.2788 | - |
0.2652 | 350 | 0.2315 | - |
0.3030 | 400 | 0.1847 | - |
0.3409 | 450 | 0.1253 | - |
0.3788 | 500 | 0.1363 | - |
0.4167 | 550 | 0.1816 | - |
0.4545 | 600 | 0.1957 | - |
0.4924 | 650 | 0.1931 | - |
0.5303 | 700 | 0.1392 | - |
0.5682 | 750 | 0.0613 | - |
0.6061 | 800 | 0.0403 | - |
0.6439 | 850 | 0.0796 | - |
0.6818 | 900 | 0.0661 | - |
0.7197 | 950 | 0.1207 | - |
0.7576 | 1000 | 0.0795 | - |
0.7955 | 1050 | 0.0439 | - |
0.8333 | 1100 | 0.0744 | - |
0.8712 | 1150 | 0.0972 | - |
0.9091 | 1200 | 0.0512 | - |
0.9470 | 1250 | 0.0335 | - |
0.9848 | 1300 | 0.0092 | - |
1.0227 | 1350 | 0.0489 | - |
1.0606 | 1400 | 0.0176 | - |
1.0985 | 1450 | 0.0302 | - |
1.1364 | 1500 | 0.0811 | - |
1.1742 | 1550 | 0.0181 | - |
1.2121 | 1600 | 0.0354 | - |
1.25 | 1650 | 0.0183 | - |
1.2879 | 1700 | 0.0167 | - |
1.3258 | 1750 | 0.006 | - |
1.3636 | 1800 | 0.0294 | - |
1.4015 | 1850 | 0.0342 | - |
1.4394 | 1900 | 0.005 | - |
1.4773 | 1950 | 0.0044 | - |
1.5152 | 2000 | 0.0069 | - |
1.5530 | 2050 | 0.0051 | - |
1.5909 | 2100 | 0.0375 | - |
1.6288 | 2150 | 0.0123 | - |
1.6667 | 2200 | 0.0058 | - |
1.7045 | 2250 | 0.0086 | - |
1.7424 | 2300 | 0.0141 | - |
1.7803 | 2350 | 0.0014 | - |
1.8182 | 2400 | 0.0047 | - |
1.8561 | 2450 | 0.0018 | - |
1.8939 | 2500 | 0.0063 | - |
1.9318 | 2550 | 0.0018 | - |
1.9697 | 2600 | 0.0032 | - |
2.0076 | 2650 | 0.001 | - |
2.0455 | 2700 | 0.0165 | - |
2.0833 | 2750 | 0.0773 | - |
2.1212 | 2800 | 0.0014 | - |
2.1591 | 2850 | 0.0105 | - |
2.1970 | 2900 | 0.0013 | - |
2.2348 | 2950 | 0.0009 | - |
2.2727 | 3000 | 0.0034 | - |
2.3106 | 3050 | 0.0013 | - |
2.3485 | 3100 | 0.0065 | - |
2.3864 | 3150 | 0.0008 | - |
2.4242 | 3200 | 0.1143 | - |
2.4621 | 3250 | 0.0036 | - |
2.5 | 3300 | 0.0254 | - |
2.5379 | 3350 | 0.0023 | - |
2.5758 | 3400 | 0.004 | - |
2.6136 | 3450 | 0.0034 | - |
2.6515 | 3500 | 0.0019 | - |
2.6894 | 3550 | 0.001 | - |
2.7273 | 3600 | 0.1044 | - |
2.7652 | 3650 | 0.0005 | - |
2.8030 | 3700 | 0.0955 | - |
2.8409 | 3750 | 0.0011 | - |
2.8788 | 3800 | 0.0018 | - |
2.9167 | 3850 | 0.0017 | - |
2.9545 | 3900 | 0.0007 | - |
2.9924 | 3950 | 0.001 | - |
3.0303 | 4000 | 0.0009 | - |
3.0682 | 4050 | 0.001 | - |
3.1061 | 4100 | 0.0035 | - |
3.1439 | 4150 | 0.0009 | - |
3.1818 | 4200 | 0.0009 | - |
3.2197 | 4250 | 0.0005 | - |
3.2576 | 4300 | 0.0011 | - |
3.2955 | 4350 | 0.0007 | - |
3.3333 | 4400 | 0.0007 | - |
3.3712 | 4450 | 0.0003 | - |
3.4091 | 4500 | 0.0008 | - |
3.4470 | 4550 | 0.0007 | - |
3.4848 | 4600 | 0.0004 | - |
3.5227 | 4650 | 0.0011 | - |
3.5606 | 4700 | 0.0009 | - |
3.5985 | 4750 | 0.0004 | - |
3.6364 | 4800 | 0.0006 | - |
3.6742 | 4850 | 0.0012 | - |
3.7121 | 4900 | 0.0004 | - |
3.75 | 4950 | 0.0003 | - |
3.7879 | 5000 | 0.0005 | - |
3.8258 | 5050 | 0.0007 | - |
3.8636 | 5100 | 0.0012 | - |
3.9015 | 5150 | 0.0003 | - |
3.9394 | 5200 | 0.0009 | - |
3.9773 | 5250 | 0.0003 | - |
4.0152 | 5300 | 0.0003 | - |
4.0530 | 5350 | 0.0005 | - |
4.0909 | 5400 | 0.0004 | - |
4.1288 | 5450 | 0.0003 | - |
4.1667 | 5500 | 0.0003 | - |
4.2045 | 5550 | 0.0011 | - |
4.2424 | 5600 | 0.0002 | - |
4.2803 | 5650 | 0.0004 | - |
4.3182 | 5700 | 0.0009 | - |
4.3561 | 5750 | 0.0003 | - |
4.3939 | 5800 | 0.0002 | - |
4.4318 | 5850 | 0.0008 | - |
4.4697 | 5900 | 0.0003 | - |
4.5076 | 5950 | 0.0004 | - |
4.5455 | 6000 | 0.0272 | - |
4.5833 | 6050 | 0.0012 | - |
4.6212 | 6100 | 0.0006 | - |
4.6591 | 6150 | 0.0005 | - |
4.6970 | 6200 | 0.0011 | - |
4.7348 | 6250 | 0.0003 | - |
4.7727 | 6300 | 0.0003 | - |
4.8106 | 6350 | 0.0026 | - |
4.8485 | 6400 | 0.0007 | - |
4.8864 | 6450 | 0.0002 | - |
4.9242 | 6500 | 0.0007 | - |
4.9621 | 6550 | 0.0004 | - |
5.0 | 6600 | 0.0002 | - |
5.0379 | 6650 | 0.0002 | - |
5.0758 | 6700 | 0.0003 | - |
5.1136 | 6750 | 0.0004 | - |
5.1515 | 6800 | 0.0007 | - |
5.1894 | 6850 | 0.0002 | - |
5.2273 | 6900 | 0.0002 | - |
5.2652 | 6950 | 0.0001 | - |
5.3030 | 7000 | 0.0003 | - |
5.3409 | 7050 | 0.0001 | - |
5.3788 | 7100 | 0.0002 | - |
5.4167 | 7150 | 0.0003 | - |
5.4545 | 7200 | 0.0006 | - |
5.4924 | 7250 | 0.0002 | - |
5.5303 | 7300 | 0.0002 | - |
5.5682 | 7350 | 0.0002 | - |
5.6061 | 7400 | 0.0004 | - |
5.6439 | 7450 | 0.0003 | - |
5.6818 | 7500 | 0.0002 | - |
5.7197 | 7550 | 0.0002 | - |
5.7576 | 7600 | 0.0002 | - |
5.7955 | 7650 | 0.0005 | - |
5.8333 | 7700 | 0.0013 | - |
5.8712 | 7750 | 0.0002 | - |
5.9091 | 7800 | 0.0015 | - |
5.9470 | 7850 | 0.0001 | - |
5.9848 | 7900 | 0.0002 | - |
6.0227 | 7950 | 0.0001 | - |
6.0606 | 8000 | 0.0015 | - |
6.0985 | 8050 | 0.0004 | - |
6.1364 | 8100 | 0.0373 | - |
6.1742 | 8150 | 0.0003 | - |
6.2121 | 8200 | 0.0002 | - |
6.25 | 8250 | 0.0003 | - |
6.2879 | 8300 | 0.0003 | - |
6.3258 | 8350 | 0.0003 | - |
6.3636 | 8400 | 0.0002 | - |
6.4015 | 8450 | 0.0001 | - |
6.4394 | 8500 | 0.0004 | - |
6.4773 | 8550 | 0.0002 | - |
6.5152 | 8600 | 0.0002 | - |
6.5530 | 8650 | 0.0002 | - |
6.5909 | 8700 | 0.0004 | - |
6.6288 | 8750 | 0.0002 | - |
6.6667 | 8800 | 0.0001 | - |
6.7045 | 8850 | 0.0003 | - |
6.7424 | 8900 | 0.0001 | - |
6.7803 | 8950 | 0.0002 | - |
6.8182 | 9000 | 0.0003 | - |
6.8561 | 9050 | 0.0002 | - |
6.8939 | 9100 | 0.0002 | - |
6.9318 | 9150 | 0.0001 | - |
6.9697 | 9200 | 0.0001 | - |
7.0076 | 9250 | 0.0002 | - |
7.0455 | 9300 | 0.0002 | - |
7.0833 | 9350 | 0.0002 | - |
7.1212 | 9400 | 0.0001 | - |
7.1591 | 9450 | 0.0002 | - |
7.1970 | 9500 | 0.0003 | - |
7.2348 | 9550 | 0.0005 | - |
7.2727 | 9600 | 0.0002 | - |
7.3106 | 9650 | 0.0002 | - |
7.3485 | 9700 | 0.0002 | - |
7.3864 | 9750 | 0.0002 | - |
7.4242 | 9800 | 0.0002 | - |
7.4621 | 9850 | 0.0001 | - |
7.5 | 9900 | 0.0001 | - |
7.5379 | 9950 | 0.0002 | - |
7.5758 | 10000 | 0.0001 | - |
7.6136 | 10050 | 0.0001 | - |
7.6515 | 10100 | 0.0001 | - |
7.6894 | 10150 | 0.0002 | - |
7.7273 | 10200 | 0.0002 | - |
7.7652 | 10250 | 0.0001 | - |
7.8030 | 10300 | 0.0002 | - |
7.8409 | 10350 | 0.0003 | - |
7.8788 | 10400 | 0.0002 | - |
7.9167 | 10450 | 0.0002 | - |
7.9545 | 10500 | 0.0001 | - |
7.9924 | 10550 | 0.0002 | - |
8.0303 | 10600 | 0.0002 | - |
8.0682 | 10650 | 0.0002 | - |
8.1061 | 10700 | 0.0002 | - |
8.1439 | 10750 | 0.0001 | - |
8.1818 | 10800 | 0.0001 | - |
8.2197 | 10850 | 0.0001 | - |
8.2576 | 10900 | 0.0001 | - |
8.2955 | 10950 | 0.0001 | - |
8.3333 | 11000 | 0.0002 | - |
8.3712 | 11050 | 0.0007 | - |
8.4091 | 11100 | 0.0001 | - |
8.4470 | 11150 | 0.0002 | - |
8.4848 | 11200 | 0.0001 | - |
8.5227 | 11250 | 0.0002 | - |
8.5606 | 11300 | 0.0001 | - |
8.5985 | 11350 | 0.0001 | - |
8.6364 | 11400 | 0.0001 | - |
8.6742 | 11450 | 0.0001 | - |
8.7121 | 11500 | 0.0002 | - |
8.75 | 11550 | 0.0001 | - |
8.7879 | 11600 | 0.0001 | - |
8.8258 | 11650 | 0.0001 | - |
8.8636 | 11700 | 0.0001 | - |
8.9015 | 11750 | 0.0001 | - |
8.9394 | 11800 | 0.0001 | - |
8.9773 | 11850 | 0.0001 | - |
9.0152 | 11900 | 0.0001 | - |
9.0530 | 11950 | 0.0001 | - |
9.0909 | 12000 | 0.0001 | - |
9.1288 | 12050 | 0.0001 | - |
9.1667 | 12100 | 0.0002 | - |
9.2045 | 12150 | 0.0001 | - |
9.2424 | 12200 | 0.0001 | - |
9.2803 | 12250 | 0.0002 | - |
9.3182 | 12300 | 0.0002 | - |
9.3561 | 12350 | 0.0002 | - |
9.3939 | 12400 | 0.0001 | - |
9.4318 | 12450 | 0.0003 | - |
9.4697 | 12500 | 0.0001 | - |
9.5076 | 12550 | 0.0001 | - |
9.5455 | 12600 | 0.0001 | - |
9.5833 | 12650 | 0.0002 | - |
9.6212 | 12700 | 0.0001 | - |
9.6591 | 12750 | 0.0002 | - |
9.6970 | 12800 | 0.0002 | - |
9.7348 | 12850 | 0.0001 | - |
9.7727 | 12900 | 0.0001 | - |
9.8106 | 12950 | 0.0001 | - |
9.8485 | 13000 | 0.0001 | - |
9.8864 | 13050 | 0.0001 | - |
9.9242 | 13100 | 0.0001 | - |
9.9621 | 13150 | 0.0001 | - |
10.0 | 13200 | 0.0002 | - |
Framework Versions
- Python: 3.11.8
- SetFit: 1.1.0.dev0
- Sentence Transformers: 2.6.1
- Transformers: 4.39.3
- PyTorch: 1.13.1+cu117
- Datasets: 2.19.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}