language:
- pt
thumbnail: Portuguese BERT for the Legal Domain
tags:
- sentence-transformers
- transformers
- bert
- pytorch
- sentence-similarity
license: mit
pipeline_tag: sentence-similarity
datasets:
- stjiris/portuguese-legal-sentences-v0
- assin
- assin2
- stsb_multi_mt
- stjiris/IRIS_sts
widget:
- source_sentence: O advogado apresentou as provas ao juíz.
sentences:
- O juíz leu as provas.
- O juíz leu o recurso.
- O juíz atirou uma pedra.
model-index:
- name: BERTimbau
results:
- task:
name: STS
type: STS
metrics:
- name: Pearson Correlation - assin Dataset
type: Pearson Correlation
value: 0.7763420633772975
- name: Pearson Correlation - assin2 Dataset
type: Pearson Correlation
value: 0.8067374216274927
- name: Pearson Correlation - stsb_multi_mt pt Dataset
type: Pearson Correlation
value: 0.8388993109077857
- name: Pearson Correlation - IRIS STS Dataset
type: Pearson Correlation
value: 0.7931353381814285
Work developed as part of Project IRIS.
Thesis: A Semantic Search System for Supremo Tribunal de Justiça
stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-v1 (Legal BERTimbau)
This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. stjiris/bert-large-portuguese-cased-legal-tsdae derives from BERTimbau large.
It was trained using the TSDAE technique with a learning rate 1e-5 Legal Sentences from +-30000 documents 212k training steps (best performance for our semantic search system implementation)
It was presented to Generative Pseudo Labeling training.
The model was presented to NLI data. 16 batch size, 2e-5 lr
It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the assin, assin2, stsb_multi_mt pt and IRIS STS datasets. 'lr': 1e-5
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-v1')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-v1')
model = AutoModel.from_pretrained('stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-v1')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1028, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
Citing & Authors
Contributions
If you use this work, please cite:
@inproceedings{MeloSemantic,
author = {Melo, Rui and Santos, Professor Pedro Alexandre and Dias, Professor Jo{\~ a}o},
title = {A {Semantic} {Search} {System} for {Supremo} {Tribunal} de {Justi}{\c c}a},
}
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}
@inproceedings{fonseca2016assin,
title={ASSIN: Avaliacao de similaridade semantica e inferencia textual},
author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S},
booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal},
pages={13--15},
year={2016}
}
@inproceedings{real2020assin,
title={The assin 2 shared task: a quick overview},
author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
booktitle={International Conference on Computational Processing of the Portuguese Language},
pages={406--412},
year={2020},
organization={Springer}
}
@InProceedings{huggingface:dataset:stsb_multi_mt,
title = {Machine translated multilingual STS benchmark dataset.},
author={Philip May},
year={2021},
url={https://github.com/PhilipMay/stsb-multi-mt}
}