ananth-docai1 / README.md
ananthrgv's picture
End of training
b223690
metadata
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: ananth-docai1
    results: []

ananth-docai1

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7024
  • Answer: {'precision': 0.7113513513513513, 'recall': 0.8133498145859085, 'f1': 0.7589388696655133, 'number': 809}
  • Header: {'precision': 0.30952380952380953, 'recall': 0.3277310924369748, 'f1': 0.31836734693877555, 'number': 119}
  • Question: {'precision': 0.7811387900355872, 'recall': 0.8244131455399061, 'f1': 0.8021927820922796, 'number': 1065}
  • Overall Precision: 0.7241
  • Overall Recall: 0.7903
  • Overall F1: 0.7558
  • Overall Accuracy: 0.8106

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7944 1.0 10 1.6233 {'precision': 0.01929260450160772, 'recall': 0.014833127317676144, 'f1': 0.016771488469601678, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.27685325264750377, 'recall': 0.17183098591549295, 'f1': 0.2120509849362688, 'number': 1065} 0.1520 0.0978 0.1190 0.3505
1.5001 2.0 20 1.2971 {'precision': 0.11125, 'recall': 0.1100123609394314, 'f1': 0.11062771908017402, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4044059795436664, 'recall': 0.48262910798122066, 'f1': 0.4400684931506849, 'number': 1065} 0.2912 0.3026 0.2968 0.5348
1.136 3.0 30 0.9852 {'precision': 0.4911699779249448, 'recall': 0.5500618046971569, 'f1': 0.5189504373177842, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.6086587436332768, 'recall': 0.6732394366197183, 'f1': 0.6393223361569326, 'number': 1065} 0.5562 0.5830 0.5693 0.6941
0.8567 4.0 40 0.8143 {'precision': 0.627744510978044, 'recall': 0.7775030902348579, 'f1': 0.6946438431805633, 'number': 809} {'precision': 0.06666666666666667, 'recall': 0.01680672268907563, 'f1': 0.026845637583892617, 'number': 119} {'precision': 0.6987179487179487, 'recall': 0.7164319248826291, 'f1': 0.7074640704682429, 'number': 1065} 0.6563 0.6994 0.6772 0.7467
0.6998 5.0 50 0.7133 {'precision': 0.6534859521331946, 'recall': 0.7762669962917181, 'f1': 0.7096045197740113, 'number': 809} {'precision': 0.2, 'recall': 0.11764705882352941, 'f1': 0.14814814814814817, 'number': 119} {'precision': 0.7243532560214094, 'recall': 0.7624413145539906, 'f1': 0.7429094236047575, 'number': 1065} 0.6757 0.7296 0.7016 0.7781
0.5886 6.0 60 0.6775 {'precision': 0.648406374501992, 'recall': 0.8046971569839307, 'f1': 0.7181467181467182, 'number': 809} {'precision': 0.25806451612903225, 'recall': 0.13445378151260504, 'f1': 0.17679558011049723, 'number': 119} {'precision': 0.712947189097104, 'recall': 0.7859154929577464, 'f1': 0.7476552032157214, 'number': 1065} 0.6714 0.7546 0.7106 0.7890
0.5185 7.0 70 0.6770 {'precision': 0.6755888650963597, 'recall': 0.7799752781211372, 'f1': 0.7240390131956398, 'number': 809} {'precision': 0.2079207920792079, 'recall': 0.17647058823529413, 'f1': 0.19090909090909092, 'number': 119} {'precision': 0.7341337907375644, 'recall': 0.8037558685446009, 'f1': 0.7673688928731511, 'number': 1065} 0.6851 0.7566 0.7191 0.7955
0.4672 8.0 80 0.6729 {'precision': 0.683083511777302, 'recall': 0.788627935723115, 'f1': 0.7320711417096959, 'number': 809} {'precision': 0.23300970873786409, 'recall': 0.20168067226890757, 'f1': 0.21621621621621623, 'number': 119} {'precision': 0.747431506849315, 'recall': 0.819718309859155, 'f1': 0.7819077474249888, 'number': 1065} 0.6961 0.7702 0.7313 0.8007
0.4188 9.0 90 0.6664 {'precision': 0.6888888888888889, 'recall': 0.8046971569839307, 'f1': 0.74230330672748, 'number': 809} {'precision': 0.2727272727272727, 'recall': 0.25210084033613445, 'f1': 0.26200873362445415, 'number': 119} {'precision': 0.7708703374777975, 'recall': 0.8150234741784037, 'f1': 0.792332268370607, 'number': 1065} 0.7102 0.7772 0.7422 0.8045
0.3724 10.0 100 0.6845 {'precision': 0.6928721174004193, 'recall': 0.8170580964153276, 'f1': 0.7498581962563812, 'number': 809} {'precision': 0.33, 'recall': 0.2773109243697479, 'f1': 0.30136986301369867, 'number': 119} {'precision': 0.7818343722172751, 'recall': 0.8244131455399061, 'f1': 0.8025594149908593, 'number': 1065} 0.7221 0.7888 0.7540 0.8047
0.3402 11.0 110 0.6830 {'precision': 0.7118093174431203, 'recall': 0.8121137206427689, 'f1': 0.7586605080831409, 'number': 809} {'precision': 0.3090909090909091, 'recall': 0.2857142857142857, 'f1': 0.296943231441048, 'number': 119} {'precision': 0.787422497785651, 'recall': 0.8347417840375587, 'f1': 0.8103919781221514, 'number': 1065} 0.7308 0.7928 0.7605 0.8129
0.3219 12.0 120 0.6944 {'precision': 0.7179203539823009, 'recall': 0.8022249690976514, 'f1': 0.7577349678925861, 'number': 809} {'precision': 0.3220338983050847, 'recall': 0.31932773109243695, 'f1': 0.32067510548523204, 'number': 119} {'precision': 0.781882145998241, 'recall': 0.8347417840375587, 'f1': 0.8074477747502271, 'number': 1065} 0.7300 0.7908 0.7592 0.8097
0.3004 13.0 130 0.6978 {'precision': 0.7147540983606557, 'recall': 0.8084054388133498, 'f1': 0.7587006960556845, 'number': 809} {'precision': 0.33043478260869563, 'recall': 0.31932773109243695, 'f1': 0.32478632478632474, 'number': 119} {'precision': 0.7890974084003575, 'recall': 0.8291079812206573, 'f1': 0.8086080586080587, 'number': 1065} 0.7329 0.7903 0.7605 0.8144
0.2942 14.0 140 0.7001 {'precision': 0.7145945945945946, 'recall': 0.8170580964153276, 'f1': 0.7623990772779701, 'number': 809} {'precision': 0.30708661417322836, 'recall': 0.3277310924369748, 'f1': 0.3170731707317073, 'number': 119} {'precision': 0.7820284697508897, 'recall': 0.8253521126760563, 'f1': 0.8031064412973961, 'number': 1065} 0.7256 0.7923 0.7575 0.8108
0.2853 15.0 150 0.7024 {'precision': 0.7113513513513513, 'recall': 0.8133498145859085, 'f1': 0.7589388696655133, 'number': 809} {'precision': 0.30952380952380953, 'recall': 0.3277310924369748, 'f1': 0.31836734693877555, 'number': 119} {'precision': 0.7811387900355872, 'recall': 0.8244131455399061, 'f1': 0.8021927820922796, 'number': 1065} 0.7241 0.7903 0.7558 0.8106

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2