wav2vec2-5Class-Validation-Mobil
This model is a fine-tuned version of anderloh/Hugginhface-master-wav2vec-pretreined-5-class-train-test on the anderloh/ValidateRes dataset. It achieves the following results on the evaluation set:
- Loss: 1.2514
- Accuracy: 0.5836
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 300.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.92 | 3 | 1.6024 | 0.3203 |
No log | 1.85 | 6 | 1.6022 | 0.3167 |
No log | 2.77 | 9 | 1.6020 | 0.3167 |
No log | 4.0 | 13 | 1.6015 | 0.3167 |
No log | 4.92 | 16 | 1.6009 | 0.3167 |
No log | 5.85 | 19 | 1.6003 | 0.3132 |
No log | 6.77 | 22 | 1.5996 | 0.3060 |
No log | 8.0 | 26 | 1.5984 | 0.2989 |
No log | 8.92 | 29 | 1.5974 | 0.2918 |
No log | 9.85 | 32 | 1.5964 | 0.2740 |
No log | 10.77 | 35 | 1.5952 | 0.2598 |
No log | 12.0 | 39 | 1.5934 | 0.2633 |
No log | 12.92 | 42 | 1.5920 | 0.2740 |
No log | 13.85 | 45 | 1.5905 | 0.2989 |
No log | 14.77 | 48 | 1.5889 | 0.2989 |
No log | 16.0 | 52 | 1.5868 | 0.2847 |
No log | 16.92 | 55 | 1.5851 | 0.2847 |
No log | 17.85 | 58 | 1.5833 | 0.2847 |
No log | 18.77 | 61 | 1.5816 | 0.2633 |
No log | 20.0 | 65 | 1.5790 | 0.2456 |
No log | 20.92 | 68 | 1.5770 | 0.2420 |
No log | 21.85 | 71 | 1.5748 | 0.2349 |
No log | 22.77 | 74 | 1.5728 | 0.2313 |
No log | 24.0 | 78 | 1.5699 | 0.2278 |
No log | 24.92 | 81 | 1.5678 | 0.2313 |
No log | 25.85 | 84 | 1.5657 | 0.2313 |
No log | 26.77 | 87 | 1.5638 | 0.2313 |
No log | 28.0 | 91 | 1.5613 | 0.2313 |
No log | 28.92 | 94 | 1.5597 | 0.2313 |
No log | 29.85 | 97 | 1.5588 | 0.2313 |
1.561 | 30.77 | 100 | 1.5586 | 0.2313 |
1.561 | 32.0 | 104 | 1.5597 | 0.2313 |
1.561 | 32.92 | 107 | 1.5619 | 0.2313 |
1.561 | 33.85 | 110 | 1.5661 | 0.2313 |
1.561 | 34.77 | 113 | 1.5720 | 0.2313 |
1.561 | 36.0 | 117 | 1.5833 | 0.2313 |
1.561 | 36.92 | 120 | 1.5957 | 0.2313 |
1.561 | 37.85 | 123 | 1.6120 | 0.2313 |
1.561 | 38.77 | 126 | 1.6318 | 0.2313 |
1.561 | 40.0 | 130 | 1.6638 | 0.2313 |
1.561 | 40.92 | 133 | 1.6905 | 0.2313 |
1.561 | 41.85 | 136 | 1.7197 | 0.2313 |
1.561 | 42.77 | 139 | 1.7503 | 0.2313 |
1.561 | 44.0 | 143 | 1.7803 | 0.2313 |
1.561 | 44.92 | 146 | 1.7917 | 0.2313 |
1.561 | 45.85 | 149 | 1.7920 | 0.2313 |
1.561 | 46.77 | 152 | 1.7869 | 0.2313 |
1.561 | 48.0 | 156 | 1.7700 | 0.2598 |
1.561 | 48.92 | 159 | 1.7525 | 0.2740 |
1.561 | 49.85 | 162 | 1.7407 | 0.2776 |
1.561 | 50.77 | 165 | 1.7307 | 0.2918 |
1.561 | 52.0 | 169 | 1.7241 | 0.3096 |
1.561 | 52.92 | 172 | 1.7243 | 0.3167 |
1.561 | 53.85 | 175 | 1.7254 | 0.3167 |
1.561 | 54.77 | 178 | 1.7233 | 0.3238 |
1.561 | 56.0 | 182 | 1.7225 | 0.3238 |
1.561 | 56.92 | 185 | 1.7187 | 0.3274 |
1.561 | 57.85 | 188 | 1.7172 | 0.3274 |
1.561 | 58.77 | 191 | 1.7146 | 0.3345 |
1.561 | 60.0 | 195 | 1.7120 | 0.3488 |
1.561 | 60.92 | 198 | 1.7049 | 0.3559 |
1.3094 | 61.85 | 201 | 1.7022 | 0.3594 |
1.3094 | 62.77 | 204 | 1.6912 | 0.3737 |
1.3094 | 64.0 | 208 | 1.6798 | 0.3772 |
1.3094 | 64.92 | 211 | 1.6687 | 0.3808 |
1.3094 | 65.85 | 214 | 1.6569 | 0.3843 |
1.3094 | 66.77 | 217 | 1.6427 | 0.3915 |
1.3094 | 68.0 | 221 | 1.6301 | 0.3915 |
1.3094 | 68.92 | 224 | 1.6217 | 0.3950 |
1.3094 | 69.85 | 227 | 1.6203 | 0.3950 |
1.3094 | 70.77 | 230 | 1.6257 | 0.3950 |
1.3094 | 72.0 | 234 | 1.6192 | 0.4021 |
1.3094 | 72.92 | 237 | 1.6044 | 0.4093 |
1.3094 | 73.85 | 240 | 1.5868 | 0.4306 |
1.3094 | 74.77 | 243 | 1.5787 | 0.4377 |
1.3094 | 76.0 | 247 | 1.5762 | 0.4342 |
1.3094 | 76.92 | 250 | 1.5717 | 0.4377 |
1.3094 | 77.85 | 253 | 1.5674 | 0.4342 |
1.3094 | 78.77 | 256 | 1.5684 | 0.4270 |
1.3094 | 80.0 | 260 | 1.5619 | 0.4270 |
1.3094 | 80.92 | 263 | 1.5555 | 0.4306 |
1.3094 | 81.85 | 266 | 1.5505 | 0.4342 |
1.3094 | 82.77 | 269 | 1.5386 | 0.4413 |
1.3094 | 84.0 | 273 | 1.5362 | 0.4377 |
1.3094 | 84.92 | 276 | 1.5411 | 0.4342 |
1.3094 | 85.85 | 279 | 1.5453 | 0.4342 |
1.3094 | 86.77 | 282 | 1.5611 | 0.4270 |
1.3094 | 88.0 | 286 | 1.5766 | 0.4199 |
1.3094 | 88.92 | 289 | 1.5781 | 0.4199 |
1.3094 | 89.85 | 292 | 1.5675 | 0.4235 |
1.3094 | 90.77 | 295 | 1.5588 | 0.4270 |
1.3094 | 92.0 | 299 | 1.5496 | 0.4270 |
1.0538 | 92.92 | 302 | 1.5493 | 0.4270 |
1.0538 | 93.85 | 305 | 1.5540 | 0.4235 |
1.0538 | 94.77 | 308 | 1.5620 | 0.4164 |
1.0538 | 96.0 | 312 | 1.5648 | 0.4164 |
1.0538 | 96.92 | 315 | 1.5617 | 0.4164 |
1.0538 | 97.85 | 318 | 1.5461 | 0.4235 |
1.0538 | 98.77 | 321 | 1.5348 | 0.4306 |
1.0538 | 100.0 | 325 | 1.5346 | 0.4306 |
1.0538 | 100.92 | 328 | 1.5466 | 0.4164 |
1.0538 | 101.85 | 331 | 1.5547 | 0.4128 |
1.0538 | 102.77 | 334 | 1.5560 | 0.4128 |
1.0538 | 104.0 | 338 | 1.5315 | 0.4306 |
1.0538 | 104.92 | 341 | 1.5124 | 0.4448 |
1.0538 | 105.85 | 344 | 1.5044 | 0.4448 |
1.0538 | 106.77 | 347 | 1.5010 | 0.4484 |
1.0538 | 108.0 | 351 | 1.5005 | 0.4448 |
1.0538 | 108.92 | 354 | 1.4992 | 0.4448 |
1.0538 | 109.85 | 357 | 1.4994 | 0.4484 |
1.0538 | 110.77 | 360 | 1.4988 | 0.4520 |
1.0538 | 112.0 | 364 | 1.5005 | 0.4662 |
1.0538 | 112.92 | 367 | 1.5010 | 0.4733 |
1.0538 | 113.85 | 370 | 1.4969 | 0.4698 |
1.0538 | 114.77 | 373 | 1.4776 | 0.4733 |
1.0538 | 116.0 | 377 | 1.4528 | 0.4769 |
1.0538 | 116.92 | 380 | 1.4395 | 0.4947 |
1.0538 | 117.85 | 383 | 1.4310 | 0.4982 |
1.0538 | 118.77 | 386 | 1.4315 | 0.4947 |
1.0538 | 120.0 | 390 | 1.4389 | 0.4947 |
1.0538 | 120.92 | 393 | 1.4375 | 0.4982 |
1.0538 | 121.85 | 396 | 1.4381 | 0.4982 |
1.0538 | 122.77 | 399 | 1.4247 | 0.4982 |
0.8509 | 124.0 | 403 | 1.4196 | 0.4982 |
0.8509 | 124.92 | 406 | 1.4179 | 0.5053 |
0.8509 | 125.85 | 409 | 1.4091 | 0.5053 |
0.8509 | 126.77 | 412 | 1.3958 | 0.5053 |
0.8509 | 128.0 | 416 | 1.3736 | 0.5089 |
0.8509 | 128.92 | 419 | 1.3661 | 0.5089 |
0.8509 | 129.85 | 422 | 1.3694 | 0.5125 |
0.8509 | 130.77 | 425 | 1.3808 | 0.5125 |
0.8509 | 132.0 | 429 | 1.3819 | 0.5125 |
0.8509 | 132.92 | 432 | 1.3859 | 0.5125 |
0.8509 | 133.85 | 435 | 1.3780 | 0.5231 |
0.8509 | 134.77 | 438 | 1.3696 | 0.5231 |
0.8509 | 136.0 | 442 | 1.3564 | 0.5302 |
0.8509 | 136.92 | 445 | 1.3421 | 0.5338 |
0.8509 | 137.85 | 448 | 1.3256 | 0.5374 |
0.8509 | 138.77 | 451 | 1.3274 | 0.5374 |
0.8509 | 140.0 | 455 | 1.3402 | 0.5409 |
0.8509 | 140.92 | 458 | 1.3517 | 0.5409 |
0.8509 | 141.85 | 461 | 1.3585 | 0.5409 |
0.8509 | 142.77 | 464 | 1.3592 | 0.5374 |
0.8509 | 144.0 | 468 | 1.3329 | 0.5480 |
0.8509 | 144.92 | 471 | 1.3126 | 0.5480 |
0.8509 | 145.85 | 474 | 1.3076 | 0.5445 |
0.8509 | 146.77 | 477 | 1.3146 | 0.5480 |
0.8509 | 148.0 | 481 | 1.3345 | 0.5445 |
0.8509 | 148.92 | 484 | 1.3409 | 0.5445 |
0.8509 | 149.85 | 487 | 1.3374 | 0.5445 |
0.8509 | 150.77 | 490 | 1.3227 | 0.5480 |
0.8509 | 152.0 | 494 | 1.3201 | 0.5445 |
0.8509 | 152.92 | 497 | 1.3174 | 0.5445 |
0.7118 | 153.85 | 500 | 1.3073 | 0.5445 |
0.7118 | 154.77 | 503 | 1.2984 | 0.5552 |
0.7118 | 156.0 | 507 | 1.2975 | 0.5516 |
0.7118 | 156.92 | 510 | 1.3027 | 0.5516 |
0.7118 | 157.85 | 513 | 1.3089 | 0.5480 |
0.7118 | 158.77 | 516 | 1.3139 | 0.5480 |
0.7118 | 160.0 | 520 | 1.3068 | 0.5552 |
0.7118 | 160.92 | 523 | 1.3011 | 0.5552 |
0.7118 | 161.85 | 526 | 1.2957 | 0.5552 |
0.7118 | 162.77 | 529 | 1.2960 | 0.5552 |
0.7118 | 164.0 | 533 | 1.3159 | 0.5516 |
0.7118 | 164.92 | 536 | 1.3257 | 0.5516 |
0.7118 | 165.85 | 539 | 1.3312 | 0.5516 |
0.7118 | 166.77 | 542 | 1.3222 | 0.5516 |
0.7118 | 168.0 | 546 | 1.2986 | 0.5552 |
0.7118 | 168.92 | 549 | 1.2898 | 0.5587 |
0.7118 | 169.85 | 552 | 1.2938 | 0.5552 |
0.7118 | 170.77 | 555 | 1.2902 | 0.5552 |
0.7118 | 172.0 | 559 | 1.2879 | 0.5658 |
0.7118 | 172.92 | 562 | 1.2838 | 0.5658 |
0.7118 | 173.85 | 565 | 1.2812 | 0.5658 |
0.7118 | 174.77 | 568 | 1.2864 | 0.5658 |
0.7118 | 176.0 | 572 | 1.2934 | 0.5552 |
0.7118 | 176.92 | 575 | 1.2940 | 0.5587 |
0.7118 | 177.85 | 578 | 1.2988 | 0.5587 |
0.7118 | 178.77 | 581 | 1.2953 | 0.5623 |
0.7118 | 180.0 | 585 | 1.2972 | 0.5587 |
0.7118 | 180.92 | 588 | 1.2936 | 0.5658 |
0.7118 | 181.85 | 591 | 1.2928 | 0.5658 |
0.7118 | 182.77 | 594 | 1.2913 | 0.5658 |
0.7118 | 184.0 | 598 | 1.2825 | 0.5658 |
0.6473 | 184.92 | 601 | 1.2736 | 0.5694 |
0.6473 | 185.85 | 604 | 1.2715 | 0.5694 |
0.6473 | 186.77 | 607 | 1.2704 | 0.5694 |
0.6473 | 188.0 | 611 | 1.2717 | 0.5694 |
0.6473 | 188.92 | 614 | 1.2724 | 0.5658 |
0.6473 | 189.85 | 617 | 1.2763 | 0.5658 |
0.6473 | 190.77 | 620 | 1.2812 | 0.5658 |
0.6473 | 192.0 | 624 | 1.2791 | 0.5658 |
0.6473 | 192.92 | 627 | 1.2698 | 0.5694 |
0.6473 | 193.85 | 630 | 1.2695 | 0.5694 |
0.6473 | 194.77 | 633 | 1.2704 | 0.5694 |
0.6473 | 196.0 | 637 | 1.2737 | 0.5658 |
0.6473 | 196.92 | 640 | 1.2782 | 0.5658 |
0.6473 | 197.85 | 643 | 1.2814 | 0.5623 |
0.6473 | 198.77 | 646 | 1.2819 | 0.5623 |
0.6473 | 200.0 | 650 | 1.2746 | 0.5658 |
0.6473 | 200.92 | 653 | 1.2694 | 0.5658 |
0.6473 | 201.85 | 656 | 1.2625 | 0.5765 |
0.6473 | 202.77 | 659 | 1.2575 | 0.5801 |
0.6473 | 204.0 | 663 | 1.2549 | 0.5801 |
0.6473 | 204.92 | 666 | 1.2623 | 0.5730 |
0.6473 | 205.85 | 669 | 1.2665 | 0.5658 |
0.6473 | 206.77 | 672 | 1.2684 | 0.5658 |
0.6473 | 208.0 | 676 | 1.2770 | 0.5623 |
0.6473 | 208.92 | 679 | 1.2808 | 0.5623 |
0.6473 | 209.85 | 682 | 1.2762 | 0.5730 |
0.6473 | 210.77 | 685 | 1.2759 | 0.5730 |
0.6473 | 212.0 | 689 | 1.2752 | 0.5730 |
0.6473 | 212.92 | 692 | 1.2754 | 0.5730 |
0.6473 | 213.85 | 695 | 1.2722 | 0.5765 |
0.6473 | 214.77 | 698 | 1.2739 | 0.5765 |
0.613 | 216.0 | 702 | 1.2783 | 0.5765 |
0.613 | 216.92 | 705 | 1.2775 | 0.5765 |
0.613 | 217.85 | 708 | 1.2741 | 0.5765 |
0.613 | 218.77 | 711 | 1.2706 | 0.5765 |
0.613 | 220.0 | 715 | 1.2628 | 0.5765 |
0.613 | 220.92 | 718 | 1.2581 | 0.5801 |
0.613 | 221.85 | 721 | 1.2568 | 0.5765 |
0.613 | 222.77 | 724 | 1.2559 | 0.5730 |
0.613 | 224.0 | 728 | 1.2503 | 0.5765 |
0.613 | 224.92 | 731 | 1.2498 | 0.5765 |
0.613 | 225.85 | 734 | 1.2500 | 0.5765 |
0.613 | 226.77 | 737 | 1.2490 | 0.5765 |
0.613 | 228.0 | 741 | 1.2532 | 0.5765 |
0.613 | 228.92 | 744 | 1.2572 | 0.5765 |
0.613 | 229.85 | 747 | 1.2599 | 0.5765 |
0.613 | 230.77 | 750 | 1.2601 | 0.5730 |
0.613 | 232.0 | 754 | 1.2625 | 0.5730 |
0.613 | 232.92 | 757 | 1.2636 | 0.5765 |
0.613 | 233.85 | 760 | 1.2629 | 0.5765 |
0.613 | 234.77 | 763 | 1.2600 | 0.5765 |
0.613 | 236.0 | 767 | 1.2559 | 0.5801 |
0.613 | 236.92 | 770 | 1.2534 | 0.5801 |
0.613 | 237.85 | 773 | 1.2514 | 0.5836 |
0.613 | 238.77 | 776 | 1.2508 | 0.5836 |
0.613 | 240.0 | 780 | 1.2488 | 0.5836 |
0.613 | 240.92 | 783 | 1.2483 | 0.5836 |
0.613 | 241.85 | 786 | 1.2500 | 0.5836 |
0.613 | 242.77 | 789 | 1.2504 | 0.5801 |
0.613 | 244.0 | 793 | 1.2521 | 0.5801 |
0.613 | 244.92 | 796 | 1.2533 | 0.5801 |
0.613 | 245.85 | 799 | 1.2513 | 0.5801 |
0.5946 | 246.77 | 802 | 1.2513 | 0.5801 |
0.5946 | 248.0 | 806 | 1.2507 | 0.5801 |
0.5946 | 248.92 | 809 | 1.2492 | 0.5836 |
0.5946 | 249.85 | 812 | 1.2500 | 0.5801 |
0.5946 | 250.77 | 815 | 1.2505 | 0.5801 |
0.5946 | 252.0 | 819 | 1.2519 | 0.5801 |
0.5946 | 252.92 | 822 | 1.2531 | 0.5801 |
0.5946 | 253.85 | 825 | 1.2538 | 0.5801 |
0.5946 | 254.77 | 828 | 1.2532 | 0.5801 |
0.5946 | 256.0 | 832 | 1.2528 | 0.5801 |
0.5946 | 256.92 | 835 | 1.2528 | 0.5801 |
0.5946 | 257.85 | 838 | 1.2521 | 0.5836 |
0.5946 | 258.77 | 841 | 1.2526 | 0.5836 |
0.5946 | 260.0 | 845 | 1.2528 | 0.5836 |
0.5946 | 260.92 | 848 | 1.2529 | 0.5836 |
0.5946 | 261.85 | 851 | 1.2528 | 0.5836 |
0.5946 | 262.77 | 854 | 1.2517 | 0.5836 |
0.5946 | 264.0 | 858 | 1.2512 | 0.5836 |
0.5946 | 264.92 | 861 | 1.2512 | 0.5836 |
0.5946 | 265.85 | 864 | 1.2504 | 0.5836 |
0.5946 | 266.77 | 867 | 1.2499 | 0.5836 |
0.5946 | 268.0 | 871 | 1.2496 | 0.5836 |
0.5946 | 268.92 | 874 | 1.2497 | 0.5836 |
0.5946 | 269.85 | 877 | 1.2500 | 0.5836 |
0.5946 | 270.77 | 880 | 1.2500 | 0.5836 |
0.5946 | 272.0 | 884 | 1.2499 | 0.5836 |
0.5946 | 272.92 | 887 | 1.2501 | 0.5836 |
0.5946 | 273.85 | 890 | 1.2504 | 0.5836 |
0.5946 | 274.77 | 893 | 1.2506 | 0.5836 |
0.5946 | 276.0 | 897 | 1.2506 | 0.5836 |
0.588 | 276.92 | 900 | 1.2506 | 0.5836 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.