metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9415670650730412
- name: Recall
type: recall
value: 0.9545607539548974
- name: F1
type: f1
value: 0.9480193882667558
- name: Accuracy
type: accuracy
value: 0.9869311826690998
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0822
- Precision: 0.9416
- Recall: 0.9546
- F1: 0.9480
- Accuracy: 0.9869
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0911 | 1.0 | 1756 | 0.0656 | 0.9223 | 0.9372 | 0.9297 | 0.9827 |
0.0342 | 2.0 | 3512 | 0.0667 | 0.9259 | 0.9456 | 0.9356 | 0.9851 |
0.0203 | 3.0 | 5268 | 0.0705 | 0.9195 | 0.9419 | 0.9306 | 0.9837 |
0.0143 | 4.0 | 7024 | 0.0685 | 0.9340 | 0.9500 | 0.9419 | 0.9858 |
0.0083 | 5.0 | 8780 | 0.0775 | 0.9362 | 0.9515 | 0.9438 | 0.9864 |
0.0027 | 6.0 | 10536 | 0.0822 | 0.9416 | 0.9546 | 0.9480 | 0.9869 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3